Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TAVA: Template-free Animatable Volumetric Actors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13692))

Included in the following conference series:

Abstract

Coordinate-based volumetric representations have the potential to generate photo-realistic virtual avatars from images. However, virtual avatars need to be controllable and be rendered in novel poses that may not have been observed. Traditional techniques, such as LBS, provide such a controlling function; yet it usually requires a hand-designed body template, 3D scan data, and surface-based appearance models. On the other hand, neural representations have been shown to be powerful in representing visual details, but are under-explored in dynamic and articulated settings. In this paper, we propose TAVA, a method to create Template-free Animatable Volumetric Actors, based on neural representations. We rely solely on multi-view data and a tracked skeleton to create a volumetric model of an actor, which can be animated at test time given novel poses. Since TAVA does not require a body template, it is applicable to humans as well as other creatures such as animals. Furthermore, TAVA is designed such that it can recover accurate dense correspondences, making it amenable to content-creation and editing tasks. Through extensive experiments, we demonstrate that the proposed method generalizes well to novel poses as well as unseen views and showcase basic editing capabilities. The code is available at https://github.com/facebookresearch/tava.

Work done partially while Ruilong and Julian were at Meta Reality Labs Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For NARF, our re-implementation achieves better performance than it’s official implementation. Please refer to the supplmental material for further details.

  2. 2.

    Pose-NeRF, A-NeRF and NARF all query the color and density of \({(\textbf{x}_v, \textbf{P})}\) in a higher dimensional (\(>3\)) space, where we do the nearest neighbor matching for them using our approach as described in Sect. 3.5. Please refer to the supp.mat. for further details.

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields. In: International Conference on Computer Vision (2021)

    Google Scholar 

  3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In: CVPR (2022)

    Google Scholar 

  4. Borshukov, G., Piponi, D., Larsen, O., Lewis, J.P., Tempelaar-Lietz, C.: Universal capture-image-based facial animation for “the matrix reloaded”. In: SIGGRAPH 2005 Courses (2005)

    Google Scholar 

  5. Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.P.: Free-viewpoint video of human actors. Trans. Graphics 22, 569–577 (2003)

    Article  Google Scholar 

  6. Casas, D., Volino, M., Collomosse, J., Hilton, A.: 4D video textures for interactive character appearance. In: Computer Graphics Forum (2014)

    Google Scholar 

  7. Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: Snarf: Differentiable forward skinning for animating non-rigid neural implicit shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11594–11604 (2021)

    Google Scholar 

  8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  9. Collet, A., et al.: High-quality streamable free-viewpoint video. Trans. Graphics 34, 1–13 (2015)

    Article  Google Scholar 

  10. De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. In: ACM SIGGRAPH 2008 papers, pp. 1–10 (2008)

    Google Scholar 

  11. Deng, B., et al.: NASA neural articulated shape approximation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 612–628. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_36

    Chapter  Google Scholar 

  12. Guo, K., et al.: The relightables: volumetric performance capture of humans with realistic relighting. ACM Trans. Graphics (ToG) 38(6), 1–19 (2019)

    Google Scholar 

  13. Hasler, N., Thormählen, T., Rosenhahn, B., Seidel, H.P.: Learning skeletons for shape and pose. In: SIGGRAPH Symposium on Interactive 3D Graphics and Games (2010)

    Google Scholar 

  14. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  15. James, D.L., Twigg, C.D.: Skinning mesh animations. Trans. Graphics 24, 399–407 (2005)

    Article  Google Scholar 

  16. Jiang, B., Zhang, J., Cai, J., Zheng, J.: Disentangled human body embedding based on deep hierarchical neural network. Trans. Visual. Comput. Graphics 26, 2560–2575 (2020)

    Article  Google Scholar 

  17. Li, H., et al.: Temporally coherent completion of dynamic shapes. ACM Trans. Graphics (TOG) 31(1), 1–11 (2012)

    Article  Google Scholar 

  18. Li, K., et al.: SPA: sparse photorealistic animation using a single RGB-D camera. Trans. Circuits Syst. Video Technol. 27, 771–783 (2016)

    Google Scholar 

  19. Li, R., et al.: Learning formation of physically-based face attributes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3410–3419 (2020)

    Google Scholar 

  20. Li, R., Xiu, Y., Saito, S., Huang, Z., Olszewski, K., Li, H.: Monocular real-time volumetric performance capture. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 49–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_4

    Chapter  Google Scholar 

  21. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  22. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graphics (TOG) 40(6), 1–16 (2021)

    Google Scholar 

  23. Liu, S., Li, T., Chen, W., Li, H.: A general differentiable mesh renderer for image-based 3D reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 50–62 (2020)

    Article  Google Scholar 

  24. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), 65:1-65:14 (2019)

    Article  Google Scholar 

  25. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. Trans. Graphics 34, 1–16 (2015)

    Article  Google Scholar 

  26. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4D reconstruction by learning particle dynamics. In: International Conference on Computer Vision (2019)

    Google Scholar 

  29. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5762–5772 (2021)

    Google Scholar 

  30. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 598–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_36

    Chapter  Google Scholar 

  31. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  32. Park, K., et al.: Nerfies: deformable neural radiance fields. In: International Conference on Computer Vision (2021)

    Google Scholar 

  33. Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph. 40(6) (2021)

    Google Scholar 

  34. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: International Conference on Computer Vision (2021)

    Google Scholar 

  35. Peng, S., et al.: Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063 (2021)

    Google Scholar 

  36. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  37. Raj, A., Tanke, J., Hays, J., Vo, M., Stoll, C., Lassner, C.: ANR: articulated neural rendering for virtual avatars. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3722–3731 (2021)

    Google Scholar 

  38. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFU: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  39. Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: weakly supervised learning of skinned clothed avatar networks. In: Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  40. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3d-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  41. Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graphics Appl. 27(3), 21–31 (2007)

    Article  Google Scholar 

  42. Su, S.Y., Yu, F., Zollhöfer, M., Rhodin, H.: A-nerf: articulated neural radiance fields for learning human shape, appearance, and pose. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  43. Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video. In: International Conference on Computer Vision. IEEE (2021)

    Google Scholar 

  44. Volino, M., Casas, D., Collomosse, J.P., Hilton, A.: Optimal representation of multi-view video. In: British Machine Vision Conference (2014)

    Google Scholar 

  45. Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: Humannerf: free-viewpoint rendering of moving people from monocular video. In: CVPR (2022)

    Google Scholar 

  46. Xu, F., et al.: Video-based characters: creating new human performances from a multi-view video database. In: ACM SIGGRAPH 2011 papers (2011)

    Google Scholar 

  47. Xu, Z., Zhou, Y., Kalogerakis, E., Landreth, C., Singh, K.: RigNet: neural rigging for articulated characters. Trans. Graphics (2020)

    Google Scholar 

  48. Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  49. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  50. Zhi, T., Lassner, C., Tung, T., Stoll, C., Narasimhan, S.G., Vo, M.: TexMesh: reconstructing detailed human texture and geometry from RGB-D video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 492–509. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_29

    Chapter  Google Scholar 

  51. Zhou, K., Bhatnagar, B.L., Pons-Moll, G.: Unsupervised shape and pose disentanglement for 3D meshes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 341–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_21

    Chapter  Google Scholar 

Download references

Acknowledgements

Ruilong Li’s work at UC Berkeley is partly supported by the CONIX Research Center, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruilong Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1806 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R. et al. (2022). TAVA: Template-free Animatable Volumetric Actors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19824-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19823-6

  • Online ISBN: 978-3-031-19824-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics