Abstract
This paper derives the geometric relationship of epipolar geometry and orientation- and scale-covariant, e.g., SIFT, features. We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale. This equation can be used together with the well-known epipolar constraint to, e.g., estimate the fundamental matrix from four SIFT correspondences, essential matrix from three, and to solve the semi-calibrated case from three correspondences. Requiring fewer correspondences than the well-known point-based approaches (e.g., 5PT, 6PT and 7PT solvers) for epipolar geometry estimation makes RANSAC-like randomized robust estimation significantly faster. The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 800 00 image pairs. It is superior to the state-of-the-art in terms of processing time while often leading more accurate results. The solvers are included in GC-RANSAC at https://github.com/danini/graph-cut-ransac.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Precisely, fundamental matrix \(\textbf{F}\) can be estimated from two affine and a point correspondence.
- 2.
- 3.
This solver corresponds to the well-known eight-point solver [18].
References
Barath, D.: P-HAF: homography estimation using partial local affine frames. In: International Conference on Computer Vision Theory and Applications (2017)
Barath, D.: Five-point fundamental matrix estimation for uncalibrated cameras. In: Conference on Computer Vision and Pattern Recognition (2018)
Barath, D., Chin, T.J., Chum, O., Mishkin, D., Ranftl, R., Matas, J.: RANSAC in 2020 tutorial. In: CVPR (2020). http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/
Barath, D., Hajder, L.: A theory of point-wise homography estimation. Pattern Recogn. Lett. 94, 7–14 (2017)
Barath, D., Matas, J.: Graph-Cut RANSAC. In: Conference on Computer Vision and Pattern Recognition (2018)
Barath, D., Toth, T., Hajder, L.: A minimal solution for two-view focal-length estimation using two affine correspondences. In: Conference on Computer Vision and Pattern Recognition (2017)
Barath, D.: Approximate Epipolar geometry from six rotation invariant correspondences. In: International Conference on Computer Vision Theory and Applications (2018)
Barath, D.: Recovering affine features from orientation-and scale-invariant ones. In: Asian Conference on Computer Vision (2018)
Barath, D., Hajder, L.: Efficient recovery of essential matrix from two affine correspondences. IEEE Trans. Image Process. 27(11), 5328–5337 (2018)
Barath, D., Kukelova, Z.: Homography from two orientation-and scale-covariant features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1091–1099 (2019)
Barath, D., Molnar, J., Hajder, L.: Optimal surface normal from affine transformation. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SciTePress (2015)
Barath, D., Polic, M., Förstner, W., Sattler, T., Pajdla, T., Kukelova, Z.: Making affine correspondences work in camera geometry computation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 723–740. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_42
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Bentolila, J., Francos, J.M.: Conic epipolar constraints from affine correspondences. In: Computer Vision and Image Understanding (2014)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
Guan, B., Zhao, J., Barath, D., Fraundorfer, F.: Relative pose estimation for multi-camera systems from affine correspondences. In: International Conference on Computer Vision. IEEE (2021)
Hartley, R., Li, H.: An efficient hidden variable approach to minimal-case camera motion estimation. Pattern Anal. Mach. Intell. 34, 2303–2314 (2012)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)
Köser, K.: Geometric Estimation with Local Affine Frames and Free-form Surfaces. Shaker (2009)
Kukelova, Z., Kileel, J., Sturmfels, B., Pajdla, T.: A clever elimination strategy for efficient minimal solvers. In: Conference on Computer Vision and Pattern Recognition (2017). http://arxiv.org/abs/1703.05289
Li, H., Hartley, R.: Five-point motion estimation made easy. In: International Conference on Pattern Recognition (2006)
Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_16
Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision (1999)
Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1–2), 43–72 (2005)
Mills, S.: Four-and seven-point relative camera pose from oriented features. In: International Conference on 3D Vision, pp. 218–227. IEEE (2018)
Mishkin, D., Matas, J., Perdoch, M.: MODS: fast and robust method for two-view matching. Comput. Vis. Image Underst. 141, 81–93 (2015)
Mishkin, D., Radenović, F., Matas, J.: Repeatability is not enough: learning affine regions via discriminability. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 287–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_18
Molnár, J., Chetverikov, D.: Quadratic transformation for planar mapping of implicit surfaces. J. Math. Imaging Vision 48, 176–184 (2014)
Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imag. Sci. 2(2), 438–469 (2009)
Nistér, D.: An efficient solution to the five-point relative pose problem. Pattern Anal. Mach. Intell. 26, 756–770 (2004)
Perdoch, M., Matas, J., Chum, O.: Epipolar geometry from two correspondences. In: International Conference on Pattern Recognition (2006)
Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Radially-distorted conjugate translations. In: Conference on Computer Vision and Pattern Recognition (2018)
Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Rectification from radially-distorted scales. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 36–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_3
Raposo, C., Barreto, J.P.: Theory and practice of structure-from-motion using affine correspondences. In: Computer Vision and Pattern Recognition (2016)
Raposo, C., Barreto, J.P.: \(\pi \) match: monocular vSLAM and piecewise planar reconstruction using fast plane correspondences. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 380–395. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_23
Riggi, F., Toews, M., Arbel, T.: Fundamental matrix estimation via tip-transfer of invariant parameters. In: International Conference on Pattern Recognition, vol. 2, pp. 21–24. IEEE (2006)
Stewénius, H., Nistér, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. Image Vis. Comput. 26(7), 871–877 (2008)
Sweeney, C., Hollerer, T., Turk, M.: Theia: a fast and scalable structure-from-motion library. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 693–696 (2015)
Trulls, E., Jun, Y., Yi, K., Mishkin, D., Matas, J., Fua, P.: Image matching challenge. In: CVPR (2020). http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/
Turkowski, K.: Transformations of surface normal vectors. In: Technical report 22, Apple Computer (1990)
Acknowledgments
This work was supported by the ETH Zurich Postdoctoral Fellowship, by the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”, and the ERC-CZ grant MSMT LL1901.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barath, D., Kukelova, Z. (2022). Relative Pose from SIFT Features. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-19824-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19823-6
Online ISBN: 978-3-031-19824-3
eBook Packages: Computer ScienceComputer Science (R0)