Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Relative Pose from SIFT Features

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13692))

Included in the following conference series:

Abstract

This paper derives the geometric relationship of epipolar geometry and orientation- and scale-covariant, e.g., SIFT, features. We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale. This equation can be used together with the well-known epipolar constraint to, e.g., estimate the fundamental matrix from four SIFT correspondences, essential matrix from three, and to solve the semi-calibrated case from three correspondences. Requiring fewer correspondences than the well-known point-based approaches (e.g., 5PT, 6PT and 7PT solvers) for epipolar geometry estimation makes RANSAC-like randomized robust estimation significantly faster. The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 800 00 image pairs. It is superior to the state-of-the-art in terms of processing time while often leading more accurate results. The solvers are included in GC-RANSAC at https://github.com/danini/graph-cut-ransac.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Precisely, fundamental matrix \(\textbf{F}\) can be estimated from two affine and a point correspondence.

  2. 2.

    Note that the constraint  (14) derived in [10] is a linear combination of constraints (16) and (17) and can be obtained by eliminating q from these two equations.

  3. 3.

    This solver corresponds to the well-known eight-point solver [18].

References

  1. Barath, D.: P-HAF: homography estimation using partial local affine frames. In: International Conference on Computer Vision Theory and Applications (2017)

    Google Scholar 

  2. Barath, D.: Five-point fundamental matrix estimation for uncalibrated cameras. In: Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  3. Barath, D., Chin, T.J., Chum, O., Mishkin, D., Ranftl, R., Matas, J.: RANSAC in 2020 tutorial. In: CVPR (2020). http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/

  4. Barath, D., Hajder, L.: A theory of point-wise homography estimation. Pattern Recogn. Lett. 94, 7–14 (2017)

    Article  Google Scholar 

  5. Barath, D., Matas, J.: Graph-Cut RANSAC. In: Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  6. Barath, D., Toth, T., Hajder, L.: A minimal solution for two-view focal-length estimation using two affine correspondences. In: Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  7. Barath, D.: Approximate Epipolar geometry from six rotation invariant correspondences. In: International Conference on Computer Vision Theory and Applications (2018)

    Google Scholar 

  8. Barath, D.: Recovering affine features from orientation-and scale-invariant ones. In: Asian Conference on Computer Vision (2018)

    Google Scholar 

  9. Barath, D., Hajder, L.: Efficient recovery of essential matrix from two affine correspondences. IEEE Trans. Image Process. 27(11), 5328–5337 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barath, D., Kukelova, Z.: Homography from two orientation-and scale-covariant features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1091–1099 (2019)

    Google Scholar 

  11. Barath, D., Molnar, J., Hajder, L.: Optimal surface normal from affine transformation. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SciTePress (2015)

    Google Scholar 

  12. Barath, D., Polic, M., Förstner, W., Sattler, T., Pajdla, T., Kukelova, Z.: Making affine correspondences work in camera geometry computation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 723–740. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_42

    Chapter  Google Scholar 

  13. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  14. Bentolila, J., Francos, J.M.: Conic epipolar constraints from affine correspondences. In: Computer Vision and Image Understanding (2014)

    Google Scholar 

  15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  16. Guan, B., Zhao, J., Barath, D., Fraundorfer, F.: Relative pose estimation for multi-camera systems from affine correspondences. In: International Conference on Computer Vision. IEEE (2021)

    Google Scholar 

  17. Hartley, R., Li, H.: An efficient hidden variable approach to minimal-case camera motion estimation. Pattern Anal. Mach. Intell. 34, 2303–2314 (2012)

    Article  Google Scholar 

  18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Köser, K.: Geometric Estimation with Local Affine Frames and Free-form Surfaces. Shaker (2009)

    Google Scholar 

  20. Kukelova, Z., Kileel, J., Sturmfels, B., Pajdla, T.: A clever elimination strategy for efficient minimal solvers. In: Conference on Computer Vision and Pattern Recognition (2017). http://arxiv.org/abs/1703.05289

  21. Li, H., Hartley, R.: Five-point motion estimation made easy. In: International Conference on Pattern Recognition (2006)

    Google Scholar 

  22. Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_16

    Chapter  Google Scholar 

  23. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision (1999)

    Google Scholar 

  24. Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1–2), 43–72 (2005)

    Article  Google Scholar 

  25. Mills, S.: Four-and seven-point relative camera pose from oriented features. In: International Conference on 3D Vision, pp. 218–227. IEEE (2018)

    Google Scholar 

  26. Mishkin, D., Matas, J., Perdoch, M.: MODS: fast and robust method for two-view matching. Comput. Vis. Image Underst. 141, 81–93 (2015)

    Article  Google Scholar 

  27. Mishkin, D., Radenović, F., Matas, J.: Repeatability is not enough: learning affine regions via discriminability. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 287–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_18

    Chapter  Google Scholar 

  28. Molnár, J., Chetverikov, D.: Quadratic transformation for planar mapping of implicit surfaces. J. Math. Imaging Vision 48, 176–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imag. Sci. 2(2), 438–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nistér, D.: An efficient solution to the five-point relative pose problem. Pattern Anal. Mach. Intell. 26, 756–770 (2004)

    Article  Google Scholar 

  31. Perdoch, M., Matas, J., Chum, O.: Epipolar geometry from two correspondences. In: International Conference on Pattern Recognition (2006)

    Google Scholar 

  32. Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Radially-distorted conjugate translations. In: Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  33. Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Rectification from radially-distorted scales. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 36–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_3

    Chapter  Google Scholar 

  34. Raposo, C., Barreto, J.P.: Theory and practice of structure-from-motion using affine correspondences. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  35. Raposo, C., Barreto, J.P.: \(\pi \) match: monocular vSLAM and piecewise planar reconstruction using fast plane correspondences. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 380–395. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_23

    Chapter  Google Scholar 

  36. Riggi, F., Toews, M., Arbel, T.: Fundamental matrix estimation via tip-transfer of invariant parameters. In: International Conference on Pattern Recognition, vol. 2, pp. 21–24. IEEE (2006)

    Google Scholar 

  37. Stewénius, H., Nistér, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. Image Vis. Comput. 26(7), 871–877 (2008)

    Article  Google Scholar 

  38. Sweeney, C., Hollerer, T., Turk, M.: Theia: a fast and scalable structure-from-motion library. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 693–696 (2015)

    Google Scholar 

  39. Trulls, E., Jun, Y., Yi, K., Mishkin, D., Matas, J., Fua, P.: Image matching challenge. In: CVPR (2020). http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/

  40. Turkowski, K.: Transformations of surface normal vectors. In: Technical report 22, Apple Computer (1990)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ETH Zurich Postdoctoral Fellowship, by the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”, and the ERC-CZ grant MSMT LL1901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Barath .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 200 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barath, D., Kukelova, Z. (2022). Relative Pose from SIFT Features. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19824-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19823-6

  • Online ISBN: 978-3-031-19824-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics