Abstract
We explore a new idea for learning based shape reconstruction from a point cloud, based on the recently popularized implicit neural shape representations. We cast the problem as a few-shot learning of implicit neural signed distance functions in feature space, that we approach using gradient based meta-learning. We use a convolutional encoder to build a feature space given the input point cloud. An implicit decoder learns to predict signed distance values given points represented in this feature space. Setting the input point cloud, i.e. samples from the target shape function’s zero level set, as the support (i.e. context) in few-shot learning terms, we train the decoder such that it can adapt its weights to the underlying shape of this context with a few (5) tuning steps. We thus combine two types of implicit neural network conditioning mechanisms simultaneously for the first time, namely feature encoding and meta-learning. Our numerical and qualitative evaluation shows that in the context of implicit reconstruction from a sparse point cloud, our proposed strategy, i.e. meta-learning in feature space, outperforms existing alternatives, namely standard supervised learning in feature space, and meta-learning in euclidean space, while still providing fast inference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19, 127-153 (2001)
Atzmon, M., Lipman, Y.: SAL: Sign agnostic learning of shapes from raw data. In: CVPR (2020)
Atzmon, M., Lipman, Y.: SALD: Sign agnostic learning with derivatives. In: ICML (2020)
Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. Trans. Vis. Comput. Graph. 5, 349-359 (1999)
Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: Dataset and evaluation for 3D mesh registration. In: CVPR (2014)
Cai, R., et al.: Learning gradient fields for shape generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 364–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_22
Carr, J.C., et al.: Reconstruction and representation of 3d objects with radial basis functions. In: SIGGRAPH (2001)
Cazals, F., Giesen, J.: Effective Computational Geometry for Curves and Surfaces (2006)
Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36
Chang, A.X., et al.: ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, Z., Tagliasacchi, A., Zhang, H.: Bsp-net: Generating compact meshes via binary space partitioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR (2019)
Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d shape reconstruction and completion. In: CVPR (2020)
Chibane, J., Mir, A., Pons-Moll, G.: Neural unsigned distance fields for implicit function learning. In: NeurIPS (2020)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: CvxNet: Learnable convex decomposition. In: CVPR (2020)
Deprelle, T., Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Learning elementary structures for 3D shape generation and matching. In: NeurIPS (2019)
Duan, Y., Zhu, H., Wang, H., Yi, L., Nevatia, R., Guibas, L.J.: Curriculum DeepSDF. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 51–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_4
Erler, P., Guerrero, P., Ohrhallinger, S., Mitra, N.J., Wimmer, M.: Points2Surf learning implicit surfaces from point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_7
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)
Gao, C., Shih, Y., Lai, W.S., Liang, C.K., Huang, J.B.: Portrait neural radiance fields from a single image. arXiv preprint arXiv:2012.05903 (2020)
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape. In: CVPR (2020)
Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. In: ICCV (2019)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: ICML (2020)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: CVPR (2018)
Hart, J.C.: Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 12, (1996)
Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T., et al.: Local implicit grid representations for 3D scenes. In: CVPR (2020)
Jiang, Y., Ji, D., Han, Z., Zwicker, M.: SDFDiff: Differentiable rendering of signed distance fields for 3d shape optimization. In: CVPR (2020)
Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: CVPR (2018)
Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Transa. Graph. 32, 1–13 (2013)
Kellnhofer, P., Jebe, L.C., Jones, A., Spicer, R., Pulli, K., Wetzstein, G.: Neural lumigraph rendering. In: CVPR (2021)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
Kolluri, R.: Provably good moving least squares. ACM Trans. Algorithm 4, 1–25 (2008)
Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: Learning to learn quickly for few-shot learning. In: NeurIPS (2017)
Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: Learning explicit surface representations. In: CVPR (2018)
Lin, C.H., Wang, C., Lucey, S.: SDF-SRN: Learning signed distance 3D object reconstruction from static images. In: NeurIPS (2020)
Lipman, Y.: Phase transitions, distance functions, and implicit neural representations. In: ICML (2021)
Liu, C., Yang, J., Ceylan, D., Yumer, E., Furukawa, Y.: PlaneNet: Piece-wise planar reconstruction from a single RGB image. In: CVPR (2018)
Liu, M., Zhang, X., Su, H.: Meshing point clouds with predicted intrinsic-extrinsic ratio guidance. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 68–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_5
Liu, S.L., Guo, H.X., Pan, H., Wang, P.S., Tong, X., Liu, Y.: Deep implicit moving least-squares functions for 3D reconstruction. In: CVPR (2021)
Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surfaces without 3D supervision. In: NeurIPS (2019)
Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH (1987)
Ma, B., Han, Z., Liu, Y.S., Zwicker, M.: Neural-pull: Learning signed distance functions from point clouds by learning to pull space onto surfaces. In: ICML (2021)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3D reconstruction in function space. In: CVPR (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. Nerf: Representing scenes as neural radiance fields for view synthesis, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision. In: CVPR (2020)
Ohtake, Y., Belyaev, A., Alexa, M.: Sparse low-degree implicit surfaces with applications to high quality rendering, feature extraction, and smoothing. In: SGP (2005)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learning continuous signed distance functions for shape representation. In: CVPR (2019)
Paszke, A., et al.: PyTorch: An imperative style, high-performance deep learning library. In: NeurIPS (2019)
Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
Rakotosaona, M.J., Aigerman, N., Mitra, N., Ovsjanikov, M., Guerrero, P.: Differentiable surface triangulation. In: SIGGRAPH Asia (2021)
Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: Learning deep 3D representations at high resolutions. In: CVPR (2017)
Schölkopf, B., Giesen, J., Spalinger, S.: Kernel methods for implicit surface modeling. In: NeurIPS (2004)
Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: MetaSDF: Meta-learning signed distance functions. In: NeurIPS (2020)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: NeurIPS (2020)
Sitzmann, V., Rezchikov, S., Freeman, W.T., Tenenbaum, J.B., Durand, F.: Light field networks: Neural scene representations with single-evaluation rendering. In: NeurIPS (2021)
Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: Continuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)
Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NeurIPS (2017)
Takikawa, T., et al.: Neural geometric level of detail: Real-time rendering with implicit 3D shapes. In: CVPR (2021)
Tancik, M., et al.: Learned initializations for optimizing coordinate-based neural representations. In: CVPR (2021)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)
Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)
Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Stoll, C., Theobalt, C.: PatchNets: patch-based generalizable deep implicit 3d shape representations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 293–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_18
Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions by assembling volumetric primitives. In: CVPR (2017)
Venkatesh, R., et al.: Deep implicit surface point prediction networks. In: CVPR (2021)
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4
Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36, 1–11 (2017)
Williams, F., et al.: Neural fields as learnable kernels for 3D reconstruction. In: CVPR (2022)
Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., Panozzo, D.: Deep geometric prior for surface reconstruction. In: CVPR (2019)
Williams, F., Trager, M., Bruna, J., Zorin, D.: Neural splines: Fitting 3D surfaces with infinitely-wide neural networks. In: CVPR (2021)
Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NeurIPS (2016)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR (2015)
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: Deep implicit surface network for high-quality single-view 3D reconstruction. In: NeurIPS (2019)
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: NeurIPS (2020)
Yavartanoo, M., Chung, J., Neshatavar, R., Lee, K.M.: 3DIAS: 3D shape reconstruction with implicit algebraic surfaces. In: ICCV (2021)
Zheng, Z., Yu, T., Dai, Q., Liu, Y.: Deep implicit templates for 3D shape representation. In: CVPR (2021)
Zou, C., Yumer, E., Yang, J., Ceylan, D., Hoiem, D.: 3D-PRNN: Generating shape primitives with recurrent neural networks. In: CVPR (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ouasfi, A., Boukhayma, A. (2022). Few ‘Zero Level Set’-Shot Learning of Shape Signed Distance Functions in Feature Space. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-19824-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19823-6
Online ISBN: 978-3-031-19824-3
eBook Packages: Computer ScienceComputer Science (R0)