Abstract
We present a novel method to compute the 6DOF relative pose of multi-camera systems using two affine correspondences (ACs). Existing solutions to the multi-camera relative pose estimation are either restricted to special cases of motion, have too high computational complexity, or require too many point correspondences (PCs). Thus, these solvers impede an efficient or accurate relative pose estimation when applying RANSAC as a robust estimator. This paper shows that the relative pose estimation problem using ACs permits a feasible minimal solution, when exploiting the geometric constraints between ACs and multi-camera systems using a special parameterization. We present a problem formulation based on two ACs that encompass two common types of ACs across two views, i.e., inter-camera and intra-camera. Experiments on both virtual and real multi-camera systems prove that the proposed solvers are more efficient than the state-of-the-art algorithms, while resulting in a better relative pose accuracy. Source code is available at https://github.com/jizhaox/relpose-mcs-depth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alyousefi, K., Ventura, J.: Multi-camera motion estimation with affine correspondences. In: International Conference on Image Analysis and Recognition, pp. 417–431 (2020)
Barath, D., Hajder, L.: Efficient recovery of essential matrix from two affine correspondences. IEEE Trans. Image Process. 27(11), 5328–5337 (2018)
Barath, D., Kukelova, Z.: Homography from two orientation-and scale-covariant features. In: IEEE International Conference on Computer Vision, pp. 1091–1099 (2019)
Barath, D., Polic, M., Förstner, W., Sattler, T., Pajdla, T., Kukelova, Z.: Making affine correspondences work in camera geometry computation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 723–740. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_42
Bentolila, J., Francos, J.M.: Conic epipolar constraints from affine correspondences. Comput. Vis. Image Underst. 122, 105–114 (2014)
Burri, M., et al.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)
Byröd, M., Josephson, K., Aström, K.: Fast and stable polynomial equation solving and its application to computer vision. Int. J. Comput. Vision 84(3), 237–256 (2009)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Clipp, B., Kim, J.H., Frahm, J.M., Pollefeys, M., Hartley, R.: Robust 6dof motion estimation for non-overlapping, multi-camera systems. In: IEEE Workshop on Applications of Computer Vision, pp. 1–8. IEEE (2008)
Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry. Springer Science & Business Media (2006)
Eichhardt, I., Barath, D.: Relative pose from deep learned depth and a single affine correspondence. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 627–644. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_37
Eichhardt, I., Chetverikov, D.: Affine correspondences between central cameras for rapid relative pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 488–503. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_30
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry (2002). https://faculty.math.illinois.edu/Macaulay2/
Grossberg, M.D., Nayar, S.K.: A general imaging model and a method for finding its parameters. In: IEEE International Conference on Computer Vision, vol. 2, pp. 108–115. IEEE (2001)
Guan, B., Zhao, J., Barath, D., Fraundorfer, F.: Efficient recovery of multi-camera motion from two affine correspondences. In: IEEE International Conference on Robotics and Automation, pp. 1305–1311 (2021)
Guan, B., Zhao, J., Barath, D., Fraundorfer, F.: Minimal cases for computing the generalized relative pose using affine correspondences. In: IEEE International Conference on Computer Vision, pp. 6068–6077 (2021)
Hajder, L., Barath, D.: Relative planar motion for vehicle-mounted cameras from a single affine correspondence. In: IEEE International Conference on Robotics and Automation, pp. 8651–8657 (2020)
Häne, C., et al.: 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27 (2017)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)
Heng, L., et al.: Project AutoVision: localization and 3D scene perception for an autonomous vehicle with a multi-camera system. In: IEEE International Conference on Robotics and Automation, pp. 4695–4702 (2019)
Kim, J.H., Hartley, R., Frahm, J.M., Pollefeys, M.: Visual odometry for non-overlapping views using second-order cone programming. In: Asian Conference on Computer Vision. pp. 353–362 (2007)
Kim, J.H., Li, H., Hartley, R.: Motion estimation for nonoverlapping multicamera rigs: Linear algebraic and \(L_{\infty }\) geometric solutions. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1044–1059 (2009)
Kneip, L., Furgale, P.: OpenGV: A unified and generalized approach to real-time calibrated geometric vision. In: IEEE International Conference on Robotics and Automation, pp. 12034–12043 (2014)
Kneip, L., Li, H.: Efficient computation of relative pose for multi-camera systems. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 446–453 (2014)
Kneip, L., Sweeney, C., Hartley, R.: The generalized relative pose and scale problem: View-graph fusion via 2D–2D registration. In: IEEE Winter Conference on Applications of Computer Vision, pp. 1–9 (2016)
Larsson, V., Aström, K., Oskarsson, M.: Efficient solvers for minimal problems by syzygy-based reduction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 820–828 (2017)
Lee, G.H., Faundorfer, F., Pollefeys, M.: Motion estimation for self-driving cars with a generalized camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2746–2753 (2013)
Lee, G.H., Pollefeys, M., Fraundorfer, F.: Relative pose estimation for a multi-camera system with known vertical direction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 540–547 (2014)
Li, H., Hartley, R., Kim, J.H.: A linear approach to motion estimation using generalized camera models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press (1997)
Lim, J., Barnes, N., Li, H.: Estimating relative camera motion from the antipodal-epipolar constraint. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1907–1914 (2010)
Liu, L., Li, H., Dai, Y., Pan, Q.: Robust and efficient relative pose with a multi-camera system for autonomous driving in highly dynamic environments. IEEE Trans. Intell. Transp. Syst. 19(8), 2432–2444 (2017)
Martyushev, E., Li, B.: Efficient relative pose estimation for cameras and generalized cameras in case of known relative rotation angle. J. Math. Imaging Vis. 62, 1076–1086 (2020)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Miraldo, P., Araujo, H., Queiró, J.: Point-based calibration using a parametric representation of the general imaging model. In: IEEE International Conference on Computer Vision, pp. 2304–2311. IEEE (2011)
Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imag. Sci. 2(2), 438–469 (2009)
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)
Pless, R.: Using many cameras as one. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2003)
Raposo, C., Barreto, J.P.: Theory and practice of structure-from-motion using affine correspondences. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5470–5478 (2016)
Scaramuzza, D., Fraundorfer, F.: Visual odometry: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Stewénius, H., Nistér, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 789–794 (2005)
Stewénius, H., Oskarsson, M., Aström, K., Nistér, D.: Solutions to minimal generalized relative pose problems. In: Workshop on Omnidirectional Vision in conjunction with ICCV, pp. 1–8 (2005)
Sturm, P., Ramalingam, S.: A generic concept for camera calibration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24671-8_1
Sweeney, C., Flynn, J., Turk, M.: Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem. In: International Conference on 3D Vision, pp. 483–490 (2014)
Ventura, J., Arth, C., Lepetit, V.: An efficient minimal solution for multi-camera motion. In: IEEE International Conference on Computer Vision, pp. 747–755 (2015)
Zhao, J., Kneip, L., He, Y., Ma, J.: Minimal case relative pose computation using ray-point-ray features. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1176–1190 (2020)
Zhao, J., Xu, W., Kneip, L.: A certifiably globally optimal solution to generalized essential matrix estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12034–12043 (2020)
Zheng, E., Wu, C.: Structure from motion using structure-less resection. In: IEEE International Conference on Computer Vision, pp. 2075–2083 (2015)
Acknowledgment
This work has been partially funded by the National Natural Science Foundation of China (Grant Nos. 11902349 and 11727804).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Guan, B., Zhao, J. (2022). Affine Correspondences Between Multi-camera Systems for 6DOF Relative Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-19824-3_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19823-6
Online ISBN: 978-3-031-19824-3
eBook Packages: Computer ScienceComputer Science (R0)