Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CoSMix: Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

3D LiDAR semantic segmentation is fundamental for autonomous driving. Several Unsupervised Domain Adaptation (UDA) methods for point cloud data have been recently proposed to improve model generalization for different sensors and environments. Researchers working on UDA problems in the image domain have shown that sample mixing can mitigate domain shift. We propose a new approach of sample mixing for point cloud UDA, namely Compositional Semantic Mix (CoSMix), the first UDA approach for point cloud segmentation based on sample mixing. CoSMix consists of a two-branch symmetric network that can process labelled synthetic data (source) and real-world unlabelled point clouds (target) concurrently. Each branch operates on one domain by mixing selected pieces of data from the other one, and by using the semantic information derived from source labels and target pseudo-labels. We evaluate CoSMix on two large-scale datasets, showing that it outperforms state-of-the-art methods by a large margin (Our code is available at https://github.com/saltoricristiano/cosmix-uda).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. IJRR 32, 1231–1237 (2013)

    Google Scholar 

  2. Alonso, I., Riazuelo, L., Montesano, L., Murillo, A.: 3D-MiniNet: learning a 2D representation from point clouds for fast and efficient 3D LiDAR semantic segmentation. In: IROS (2020)

    Google Scholar 

  3. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: ICCV (2019)

    Google Scholar 

  4. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  5. Chen, Y., et al.: PointMixup: augmentation for point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 330–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_20

    Chapter  Google Scholar 

  6. Choy, C., Gwak, J., Savarese, S.: 4D Spatio-temporal ConvNets: Minkowski convolutional neural networks. In: CVPR (2019)

    Google Scholar 

  7. Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv (2017)

    Google Scholar 

  8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: ACRL (2017)

    Google Scholar 

  9. Gao, L., Zhang, J., Zhang, L., Tao, D.: DSP: dual soft-paste for unsupervised domain adaptive semantic segmentation. In: ACMM (2021)

    Google Scholar 

  10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  11. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  12. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv (2017)

    Google Scholar 

  13. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: CVPR (2020)

    Google Scholar 

  14. Jadon, S.: A survey of loss functions for semantic segmentation. In: CIBCB (2020)

    Google Scholar 

  15. Jaritz, M., Vu, T.H., de Charette, R., Wirbel, E., Pérez, P.: xMUDA: cross-modal unsupervised domain adaptation for 3D semantic segmentation. In: CVPR (2020)

    Google Scholar 

  16. Langer, F., Milioto, A., Haag, A., Behley, J., Stachniss, C.: Domain transfer for semantic segmentation of LiDAR data using deep neural networks. In: IROS (2021)

    Google Scholar 

  17. Mancini, M., Akata, Z., Ricci, E., Caputo, B.: Towards recognizing unseen categories in unseen domains. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_28

    Chapter  Google Scholar 

  18. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: IROS (2019)

    Google Scholar 

  19. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: out-of-context data augmentation for 3D scenes. In: 3DV (2021)

    Google Scholar 

  20. Pan, Y., Gao, B., Mei, J., Geng, S., Li, C., Zhao, H.: SemanticPOSS: a point cloud dataset with large quantity of dynamic instances. arXiv (2020)

    Google Scholar 

  21. Qi, C., Su, H., Mo, K., Guibas, L.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  22. Qi, C., Yi, L., Su, H., Guibas, L.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv (2017)

    Google Scholar 

  23. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22

    Chapter  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: WACV (2021)

    Google Scholar 

  26. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  27. Vu, T., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR (2019)

    Google Scholar 

  28. Wang, Q., Dai, D., Hoyer, L., Gool, L.V., Fink, O.: Domain adaptive semantic segmentation with self-supervised depth estimation. In: ICCV (2021)

    Google Scholar 

  29. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud. In: ICRA (2018)

    Google Scholar 

  30. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud. In: ICRA (2019)

    Google Scholar 

  31. Wu, Y., Inkpen, D., El-Roby, A.: Dual mixup regularized learning for adversarial domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 540–555. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_32

    Chapter  Google Scholar 

  32. Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: SynLiDAR: learning from synthetic LiDAR sequential point cloud for semantic segmentation. In: AAAI (2022)

    Google Scholar 

  33. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI (2020)

    Google Scholar 

  34. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: CVPR (2020)

    Google Scholar 

  35. Yi, L., Gong, B., Funkhouser, T.: Complete and label: a domain adaptation approach to semantic segmentation of LiDAR point clouds. arXiv (2021)

    Google Scholar 

  36. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  37. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)

    Google Scholar 

  38. Zhang, H., Cisse, M., Dauphin, Y., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  39. Zhang, J., et al.: PointCutMix: regularization strategy for point cloud classification. arXiv (2021)

    Google Scholar 

  40. Zhang, Y., et al.: PolarNet: an improved grid representation for online LiDAR point clouds semantic segmentation. In: CVPR (2020)

    Google Scholar 

  41. Zhao, S., et al.: ePointDA: an end-to-end simulation-to-real domain adaptation framework for LiDAR point cloud segmentation. arXiv (2020)

    Google Scholar 

  42. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation. In: CVPR (2021)

    Google Scholar 

  43. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised domain adaptation on object point clouds. In: CVPR (2021)

    Google Scholar 

  44. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  45. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by OSRAM GmbH, by the Italian Ministry of Education, Universities and Research (MIUR) “Dipartimenti di Eccellenza 2018–2022”, by the EU JPI/CH SHIELD project, by the PRIN project PREVUE (Prot. 2017N2RK7K), the EU ISFP PROTECTOR (101034216) project and the EU H2020 MARVEL (957337) project and, it was carried out in the Vision and Learning joint laboratory of FBK and UNITN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Saltori .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3496 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saltori, C., Galasso, F., Fiameni, G., Sebe, N., Ricci, E., Poiesi, F. (2022). CoSMix: Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics