Abstract
3D point-clouds and 2D images are different visual representations of the physical world. While human vision can understand both representations, computer vision models designed for 2D image and 3D point-cloud understanding are quite different. Our paper explores the potential of transferring 2D model architectures and weights to understand 3D point-clouds, by empirically investigating the feasibility of the transfer, the benefits of the transfer, and shedding light on why the transfer works. We discover that we can indeed use the same architecture and pretrained weights of a neural net model to understand both images and point-clouds. Specifically, we transfer the image-pretrained model to a point-cloud model by copying or inflating the weights. We find that finetuning the transformed image-pretrained models (FIP) with minimal efforts—only on input, output, and normalization layers—can achieve competitive performance on 3D point-cloud classification, beating a wide range of point-cloud models that adopt task-specific architectures and use a variety of tricks. When finetuning the whole model, the performance gets further improved. Meanwhile, FIP improves data efficiency, reaching up to 10.0 top-1 accuracy percent on few-shot classification. It also speeds up the training of point-cloud models by up to 11.1x for a target accuracy (e.g., 90% accuracy). Lastly, we provide an explanation of the image to point-cloud transfer from the aspect of neural collapse. The code is available at: https://github.com/chenfengxu714/image2point.
C. Xu and S. Yang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d–3d-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)
Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)
Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Ben-david, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems 19, pp. 137–144. Curran Associates, Inc. (2006)
Boulch, A., Le Saux, B., Audebert, N.: Unstructured point cloud semantic labeling using deep segmentation networks. 3DOR 2, 7 (2017)
Caesar, H.,et al.: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11621–11631 (2020)
Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2959–2968 (2019)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp. 1597–1607. PMLR (2020)
Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), IEEE (2017)
Dai, A., Nießner, M.: 3dmv: Joint 3d-multi-view prediction for 3d semantic scene segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 452–468 (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. IEEE (2009)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Feng, D., Zhou, Y., Xu, C., Tomizuka, M., Zhan, W.: A simple and efficient multi-task network for 3d object detection and road understanding. arXiv preprint arXiv:2103.04056 (2021)
Galanti, T., György, A., Hutter, M.: On the role of neural collapse in transfer learning. In: International Conference on Learning Representations (2022), https://openreview.net/forum?id=SwIp410B6aQ
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)
Goyal, A., Law, H., Liu, B., Newell, A., Deng, J.: Revisiting point cloud shape classification with a simple and effective baseline. arXiv preprint arXiv:2106.05304 (2021)
Goyal, P., et al.: Self-supervised pretraining of visual features in the wild. arXiv preprint arXiv:2103.01988 (2021)
Gur, S., Wolf, L.: Single image depth estimation trained via depth from defocus cues. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7683–7692 (2019)
Han, X.Y., Papyan, V., Donoho, D.L.: Neural collapse under mse loss: Proximity to and dynamics on the central path (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)
Henaff, O.: Data-efficient image recognition with contrastive predictive coding. In: International Conference on Machine Learning, pp. 4182–4192. PMLR (2020)
Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)
Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3d scene understanding with contrastive scene contexts. arXiv preprint arXiv:2012.09165 (2020)
Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3D scene understanding with contrastive scene contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15587–15597 (2021)
Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)
Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)
Kataoka, H., et al.: Pre-training without natural images. In: Proceedings of the Asian Conference on Computer Vision (2020)
Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863–872 (2017)
Komarichev, A., Zhong, Z., Hua, J.: A-cnn: Annularly convolutional neural networks on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7421–7430 (2019)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)
Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3D semantic segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_8
Lee, D., et al.: Regularization strategy for point cloud via rigidly mixed sample. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15900–15909 (2021)
Li, J., Chen, B.M., Lee, G.H.: So-net: Self-organizing network for point cloud analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9397–9406 (2018)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on \(\chi \)-transformed points. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. pp. 828–838 (2018)
Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: Densepoint: Learning densely contextual representation for efficient point cloud processing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5239–5248 (2019)
Liu, Y.C., et al.: Learning from 2d: Pixel-to-point knowledge transfer for 3d pretraining. arXiv preprint arXiv:2104.04687 (2021)
Liu, Z., Hu, H., Cao, Y., Zhang, Z., Tong, X.: A closer look at local aggregation operators in point cloud analysis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 326–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_20
Liu, Z., Qi, X., Fu, C.W.: 3d-to-2d distillation for indoor scene parsing. arXiv preprint arXiv:2104.02243 (2021)
Lu, K., Grover, A., Abbeel, P., Mordatch, I.: Pretrained transformers as universal computation engines. arXiv preprint arXiv:2103.05247 (2021)
Lu, Y., et al.: Open-vocabulary 3d detection via image-level class and debiased cross-modal contrastive learning. arXiv preprint arXiv:2207.01987 (2022)
Mansour, Y.: Learning and domain adaptation. In: Algorithmic Learning Theory, 20th International Conference, ALT, pp. 4–6 (2009)
Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds and algorithms. In: COLT - The 22nd Conference on Learning Theory (2009)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)
Papyan, V., Han, X.Y., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. 117(40), 24652–24663 (2020)
Park, J., Xu, C., Zhou, Y., Tomizuka, M., Zhan, W.: Detmatch: Two teachers are better than one for joint 2d and 3d semi-supervised object detection. arXiv preprint arXiv:2203.09510 (2022)
Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Foundations Trends Robot. 4(1), 1–104 (2015)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation (2016). arxiv:1612.00593
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Qiu, S., Anwar, S., Barnes, N.: Dense-resolution network for point cloud classification and segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3813–3822 (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shan, H., Zhang, Y., Yang, Q., Kruger, U., Kalra, M.K., Sun, L., Cong, W., Wang, G.: 3-D convolutional encoder-decoder network for low-dose ct via transfer learning from a 2-d trained network. IEEE Trans. Med. Imaging 37(6), 1522–1534 (2018)
Shi, B., Bai, S., Zhou, Z., Bai, X.: Deeppano: deep panoramic representation for 3-D shape recognition. IEEE Signal Process. Lett. 22(12), 2339–2343 (2015). https://doi.org/10.1109/LSP.2015.2480802
Sketchup: 3d modeling online free|3d warehouse models. https://3dwarehouse.sketchup.com (2021)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, pp. 945–953 (2015)
Tang, H., et al.: Searching efficient 3d architectures with sparse point-voxel convolution. In: European Conference on Computer Vision (2020)
Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud pre-training via view-point occlusion, completion. arXiv preprint arXiv:2010.01089 (2020)
Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graph. (TOG) 36(4), 1–11 (2017)
Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.: Pseudo-lidar from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving. In: CVPR (2019)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. Acm Trans. Graph. (tog) 38(5), 1–12 (2019)
Wang, Z., Zhan, W., Tomizuka, M.: Fusing bird’s eye view lidar point cloud and front view camera image for 3D object detection. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1–6. IEEE (2018)
Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. In: ICRA (2018)
Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv 2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: ICRA (2019)
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34
Xu, C., et al.: Pretram: Self-supervised pre-training via connecting trajectory and map. arXiv preprint arXiv:2204.10435 (2022)
Xu, C.: SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1
Xu, C., et al.: You only group once: Efficient point-cloud processing with token representation and relation inference module. arXiv preprint arXiv:2103.09975 (2021)
Xu, X., Lee, G.H.: Weakly supervised semantic point cloud segmentation: Towards 10x fewer labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13706–13715 (2020)
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)
Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3D object detection from point clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)
Yin, W., Liu, Y., Shen, C.: Virtual normal: Enforcing geometric constraints for accurate and robust depth prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)
Yue, X., Wu, B., Seshia, S.A., Keutzer, K., Sangiovanni-Vincentelli, A.L.: A lidar point cloud generator: from a virtual world to autonomous driving. In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, pp. 458–464 (2018)
Zhang, J., et al.: Pointcutmix: Regularization strategy for point cloud classification. arXiv preprint arXiv:2101.01461 (2021)
Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on any point-cloud. arXiv preprint arXiv:2101.02691 (2021)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)
Zhou, H., et al.: Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)
Acknowledgements
Co-authors from UC Berkeley were sponsored by Berkeley Deep Drive (BDD). Tomer Galanti’s contribution was supported by the Center for Minds, Brains and Machines (CBMM), funded by NSF STC award CCF-1231216.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, C. et al. (2022). Image2Point: 3D Point-Cloud Understanding with 2D Image Pretrained Models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-19836-6_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19835-9
Online ISBN: 978-3-031-19836-6
eBook Packages: Computer ScienceComputer Science (R0)