Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CenterFormer: Center-Based Transformer for 3D Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13698))

Included in the following conference series:

Abstract

Query-based transformer has shown great potential in constructing long-range attention in many image-domain tasks, but has rarely been considered in LiDAR-based 3D object detection due to the overwhelming size of the point cloud data. In this paper, we propose CenterFormer, a center-based transformer network for 3D object detection. CenterFormer first uses a center heatmap to select center candidates on top of a standard voxel-based point cloud encoder. It then uses the feature of the center candidate as the query embedding in the transformer. To further aggregate features from multiple frames, we design an approach to fuse features through cross-attention. Lastly, regression heads are added to predict the bounding box on the output center feature representation. Our design reduces the convergence difficulty and computational complexity of the transformer structure. The results show significant improvements over the strong baseline of anchor-free object detection networks. CenterFormer achieves state-of-the-art performance for a single model on the Waymo Open Dataset, with 73.7% mAPH on the validation set and 75.6% mAPH on the test set, significantly outperforming all previously published CNN and transformer-based methods. Our code is publicly available at https://github.com/TuSimple/centerformer

Z. Zhou– Work done during an internship at TuSimple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bewley, A., Sun, P., Mensink, T., Anguelov, D., Sminchisescu, C.: Range conditioned dilated convolutions for scale invariant 3d object detection. In: CoRL (2021)

    Google Scholar 

  2. Bowen, C., Alexander, G.S., Alexander, K.: Per-pixel classification is not all you need for semantic segmentation. In: NeurIPS (2021)

    Google Scholar 

  3. Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Cheng, S., et al.: Improving 3d object detection through progressive population based augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 279–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_17

    Chapter  Google Scholar 

  6. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., Li, H.: Voxel r-cnn: Towards high performance voxel-based 3d object detection. In: AAAI (2021)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  8. Fan, L., et al.: Embracing single stride 3d object detector with sparse transformer. In: CVPR (2022)

    Google Scholar 

  9. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: Rangedet: In defense of range view for lidar-based 3d object detection. In: ICCV (2021)

    Google Scholar 

  10. Ge, R., et al.: Afdet: Anchor free one stage 3d object detection. In: CVPRW (2020)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  12. Guan, T., et al.: M3detr: Multi-representation, multi-scale, mutual-relation 3d object detection with transformers. In: WACV (2022)

    Google Scholar 

  13. Hu, Y., et al.: Afdetv2: Rethinking the necessity of the second stage for object detection from point clouds. In: AAAI (2022)

    Google Scholar 

  14. Huang, R., et al.: An LSTM approach to temporal 3d object detection in lidar point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_16

    Chapter  Google Scholar 

  15. Jianwei, Y., et al.: Focal self-attention for local-global interactions in vision transformers. In: NeurIPS (2021)

    Google Scholar 

  16. Jifeng, D., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  17. Kaiwen, D., Song, B., Lingxi, X., Honggang, Q., Qingming, H., Qi, T.: Centernet: Keypoint triplets for object detection. In: ICCV (2019)

    Google Scholar 

  18. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: Fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  19. Law, H., Deng, J.: CornerNet: Detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  20. Li, Z., Wang, F., Wang, N.: Lidar r-cnn: An efficient and universal 3d object detector. In: CVPR (2021)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: CVPR (2017)

    Google Scholar 

  22. Liu, S., et al.: Dab-detr: Dynamic anchor boxes are better queries for detr. In: ICLR (2021)

    Google Scholar 

  23. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3d object detection via transformers. In: ICCV (2021)

    Google Scholar 

  24. Mao, J., Niu, M., Bai, H., Liang, X., Xu, H., Xu, C.: Pyramid r-cnn: Towards better performance and adaptability for 3d object detection. In: CVPR (2021)

    Google Scholar 

  25. Mao, J., et al.: Voxel transformer for 3d object detection. In: CVPR (2021)

    Google Scholar 

  26. Meng, D., et al.: Conditional detr for fast training convergence. In: ICCV (2021)

    Google Scholar 

  27. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object detection. In: CVPR (2021)

    Google Scholar 

  28. Ngiam, J., et al.: Starnet: Targeted computation for object detection in point clouds. arXiv (2019)

    Google Scholar 

  29. Nguyen, D.K., Ju, J., Booji, O., Oswald, M.R., Snoek, C.G.: Boxer: Box-attention for 2d and 3d transformers. In: CVPR (2022)

    Google Scholar 

  30. Noh, J., Lee, S., Ham, B.: Hvpr: Hybrid voxel-point representation for single-stage 3d object detection. In: CVPR (2021)

    Google Scholar 

  31. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)

    Google Scholar 

  32. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  33. Sheng, H., et al.: Improving 3d object detection with channel-wise transformer. In: ICCV (2021)

    Google Scholar 

  34. Shi, S., et al.: Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In: CVPR (2020)

    Google Scholar 

  35. Shi, S., et al.: Pv-rcnn++: Point-voxel feature set abstraction with local vector representation for 3d object detection. arXiv (2021)

    Google Scholar 

  36. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object progposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  37. Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network. In: TPAMI (2020)

    Google Scholar 

  38. Sun, P., ., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: CVPR (2020)

    Google Scholar 

  39. Sun, P., et al.: Rsn: Range sparse net for efficient, accurate lidar 3d object detection. In: CVPR (2021)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  41. Wang, C., Ma, C., Zhu, M., Yang, X.: Pointaugmenting: Cross-modal augmentation for 3d object detection. In: CVPR (2021)

    Google Scholar 

  42. Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C.: Max-deeplab: End-to-end panoptic segmentation with mask transformers. In: CVPR (2021)

    Google Scholar 

  43. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  44. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In: ICRA (2018)

    Google Scholar 

  45. Wu, Z., Weiliang, T., Sijin, C., Li, J., Chi-Wing, F.: Cia-ssd: Confident iou-aware single-stage object detector from point cloud. In: AAAI (2021)

    Google Scholar 

  46. Xu, Q., Zhong, Y., Neumann, U.: Behind the curtain: Learning occluded shapes for 3d object detection. In: AAAI (2022)

    Google Scholar 

  47. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. In: Sensors (2018)

    Google Scholar 

  48. Yang, Z., Zhou, Y., Chen, Z., Ngiam, J.: 3d-man: 3d multi-frame attention network for object detection. In: CVPR (2021)

    Google Scholar 

  49. Ye, M., Xu, S., Cao, T.: Hvnet: Hybrid voxel network for lidar based 3d object detection. In: CVPR (2020)

    Google Scholar 

  50. Yin, J., Shen, J., Guan, C., Zhou, D., Yang, R.: Lidar-based online 3d video object detection with graph-based message passing and spatiotemporal transformer attention. In: CVPR (2020)

    Google Scholar 

  51. Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3d object detection and tracking. In: CVPR (2021)

    Google Scholar 

  52. Ze, L., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  53. Zhang, H., et al.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv (2022)

    Google Scholar 

  54. Zhang, Y., et al.: Polarnet: An improved grid representation for online lidar point clouds semantic segmentation. In: CVPR (2020)

    Google Scholar 

  55. Zhang, Z., Sun, B., Yang, H., Huang, Q.: H3DNet: 3D object detection using hybrid geometric primitives. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_19

    Chapter  Google Scholar 

  56. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: CVPR (2021)

    Google Scholar 

  57. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR (2021)

    Google Scholar 

  58. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object detection. In: CVPR (2018)

    Google Scholar 

  59. Zhou, Z., Zhang, Y., Foroosh, H.: Panoptic-polarnet: Proposal-free lidar point cloud panoptic segmentation. In: CVPR (2021)

    Google Scholar 

  60. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3d object detection. arXiv (2019)

    Google Scholar 

  61. Zhu, X., et al.: Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In: CVPR (2021)

    Google Scholar 

  62. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. In: ICLR (2020)

    Google Scholar 

Download references

Acknowledgements

We thank Yufei Xie for his help with refactoring the code for release.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixiang Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1450 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Zhao, X., Wang, Y., Wang, P., Foroosh, H. (2022). CenterFormer: Center-Based Transformer for 3D Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13698. Springer, Cham. https://doi.org/10.1007/978-3-031-19839-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19839-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19838-0

  • Online ISBN: 978-3-031-19839-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics