Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Introduction to Discrete Soft Transforms

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

  • 417 Accesses

Abstract

In this paper a new class of discrete transforms of discrete straight segments (DSS), called Discrete Soft Transforms is introduced. The soft transformation of a segment consists in moving a single discrete point at each step while keeping the segment property. We propose the soft rotation and soft translation of a segment and extend these results to the soft translation of a tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andres, E.: The quasi-shear rotation. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-62005-2_26

    Chapter  Google Scholar 

  2. Debled-Rennesson, I., Reveilles, J.-P.: A linear algorithm for segmentation of digital curves. IJPRAI 09(04), 635–662 (1995)

    Google Scholar 

  3. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discret. Appl. Math. 139(1–3), 197–230 (2004)

    Article  MathSciNet  Google Scholar 

  4. Kovalevsky, V.A.: Finite topology and image analysis. In: Hawkes, P.W., (ed.) Image Mathematics and Image Processing, Volume 84 of Advances in Electronics and Electron Physics, pp. 197–259. Academic Press (1992)

    Google Scholar 

  5. Lachaud, J.-O., Said, M.: Two efficient algorithms for computing the characteristics of a subsegment of a digital straight line. Discret. Appl. Math. 161(15), 2293–2315 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Geometric preservation of 2d digital objects under rigid motions. J. Math. Imaging Vis. 61(2), 204–223 (2019). https://doi.org/10.1007/s10851-018-0842-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Ouattara, J.S.D., Andres, E., Largeteau-Skapin, G., Zrour, R., Tapsoba, T.M.Y.: Remainder approach for the computation of digital straight line subsegment characteristics. Discret. Appl. Math. 183, 90–101 (2015)

    Article  MathSciNet  Google Scholar 

  8. Reveillès, J.P.: Calcul en nombres entiers et algorithmique. Thèse d’état. Université Louis Pasteur, Strasbourg, France (1991)

    Google Scholar 

  9. Tarsissi, L., Coeurjolly, D., Kenmochi, Y., Romon, P.: Convexity preserving contraction of digital sets. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12047, pp. 611–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_48

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bastien Laboureix , Eric Andres or Isabelle Debled-Rennesson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laboureix, B., Andres, E., Debled-Rennesson, I. (2022). Introduction to Discrete Soft Transforms. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics