Abstract
In this paper a new class of discrete transforms of discrete straight segments (DSS), called Discrete Soft Transforms is introduced. The soft transformation of a segment consists in moving a single discrete point at each step while keeping the segment property. We propose the soft rotation and soft translation of a segment and extend these results to the soft translation of a tree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andres, E.: The quasi-shear rotation. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-62005-2_26
Debled-Rennesson, I., Reveilles, J.-P.: A linear algorithm for segmentation of digital curves. IJPRAI 09(04), 635–662 (1995)
Klette, R., Rosenfeld, A.: Digital straightness - a review. Discret. Appl. Math. 139(1–3), 197–230 (2004)
Kovalevsky, V.A.: Finite topology and image analysis. In: Hawkes, P.W., (ed.) Image Mathematics and Image Processing, Volume 84 of Advances in Electronics and Electron Physics, pp. 197–259. Academic Press (1992)
Lachaud, J.-O., Said, M.: Two efficient algorithms for computing the characteristics of a subsegment of a digital straight line. Discret. Appl. Math. 161(15), 2293–2315 (2013)
Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Geometric preservation of 2d digital objects under rigid motions. J. Math. Imaging Vis. 61(2), 204–223 (2019). https://doi.org/10.1007/s10851-018-0842-9
Ouattara, J.S.D., Andres, E., Largeteau-Skapin, G., Zrour, R., Tapsoba, T.M.Y.: Remainder approach for the computation of digital straight line subsegment characteristics. Discret. Appl. Math. 183, 90–101 (2015)
Reveillès, J.P.: Calcul en nombres entiers et algorithmique. Thèse d’état. Université Louis Pasteur, Strasbourg, France (1991)
Tarsissi, L., Coeurjolly, D., Kenmochi, Y., Romon, P.: Convexity preserving contraction of digital sets. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12047, pp. 611–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41299-9_48
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Laboureix, B., Andres, E., Debled-Rennesson, I. (2022). Introduction to Discrete Soft Transforms. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-19897-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19896-0
Online ISBN: 978-3-031-19897-7
eBook Packages: Computer ScienceComputer Science (R0)