Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Language-Driven Artistic Style Transfer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13696))

Included in the following conference series:

Abstract

Despite having promising results, style transfer, which requires preparing style images in advance, may result in lack of creativity and accessibility. Following human instruction, on the other hand, is the most natural way to perform artistic style transfer that can significantly improve controllability for visual effect applications. We introduce a new task—language-driven artistic style transfer (LDAST)—to manipulate the style of a content image, guided by a text. We propose contrastive language visual artist (CLVA) that learns to extract visual semantics from style instructions and accomplish LDAST by the patch-wise style discriminator. The discriminator considers the correlation between language and patches of style images or transferred results to jointly embed style instructions. CLVA further compares contrastive pairs of content images and style instructions to improve the mutual relativeness. The results from the same content image can preserve consistent content structures. Besides, they should present analogous style patterns from style instructions that contain similar visual semantics. The experiments show that our CLVA is effective and achieves superb transferred results on LDAST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    WikiArt: https://www.wikiart.org.

  2. 2.

    WallpapersCraft: https://wallpaperscraft.com/.

  3. 3.

    Amazon Mechanical Turk: https://www.mturk.com.

References

  1. Achlioptas, P., Ovsjanikov, M., Haydarov, K., Elhoseiny, M., Guibas, L.: ArtEmis: affective language for visual art. In: CVPR (2021)

    Google Scholar 

  2. Al-Sarraf, A., Shin, B.-S., Xu, Z., Klette, R.: Ground truth and performance evaluation of lane border detection. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 66–74. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11331-9_9

    Chapter  Google Scholar 

  3. Borkar, A., Hayes, M., Smith, M.T.: An efficient method to generate ground truth for evaluating lane detection systems. In: ICASSP (2010)

    Google Scholar 

  4. Chen, H., et al.: DualAST: dual style-learning networks for artistic style transfer. In: CVPR (2021)

    Google Scholar 

  5. Chen, J., Shen, Y., Gao, J., Liu, J., Liu, X.: Language-based image editing with recurrent attentive models. In: CVPR (2018)

    Google Scholar 

  6. Chen, Y.L., Hsu, C.T.: Towards deep style transfer: a content-aware perspective. In: BMVC (2016)

    Google Scholar 

  7. Cheng, M.M., et al.: ImageSpirit: verbal guided image parsing. In: ACM Transactions on Graphics (2013)

    Google Scholar 

  8. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR (2014)

    Google Scholar 

  9. El-Nouby, A., et al.: Tell, draw, and repeat: generating and modifying images based on continual linguistic instruction. In: ICCV (2019)

    Google Scholar 

  10. Fu, T.J., Wang, X.E., Grafton, S., Eckstein, M., Wang, W.Y.: SSCR: iterative language-based image editing via self-supervised counterfactual reasoning. In: EMNLP (2020)

    Google Scholar 

  11. Fu, T.J., Wang, X.E., Grafton, S., Eckstein, M., Wang, W.Y.: M3L: language-based video editing via multi-modal multi-level transformer. In: CVPR (2022)

    Google Scholar 

  12. Gal, R., Patashnik, O., Maron, H., Chechik, G., Cohen-Or, D.: StyleGAN-NADA: CLIP-guided domain adaptation of image generators. arXiv:2108.00946 (2021)

  13. Gao, C., Gu, D., Zhang, F., Yu, Y.: ReCoNet: real-time coherent video style transfer network. arXiv:1807.01197 (2018)

  14. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv:1508.06576 (2015)

  15. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NeurIPS (2015)

    Google Scholar 

  16. Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann, A., Shechtman, E.: Controlling perceptual factors in neural style transfer. In: CVPR (2017)

    Google Scholar 

  17. Goodfellow, I.J., et al.: Generative adversarial networks. In: NeurIPS (2014)

    Google Scholar 

  18. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  19. Huang, H., et al.: Real-time neural style transfer for videos. In: CVPR (2017)

    Google Scholar 

  20. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  21. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: a review. arXiv:1705.04058 (2017)

  22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)

    Google Scholar 

  23. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)

    Google Scholar 

  24. Kwon, G., Ye, J.C.: CLIPstyler: image style transfer with a single text condition. In: CVPR (2022)

    Google Scholar 

  25. Laput, G., et al.: PixelTone: a multimodal interface for image editing. In: CHI (2013)

    Google Scholar 

  26. Li, B., Qi, X., Lukasiewicz, T., Torr, P.H.S.: ManiGAN: text-guided image manipulation. In: CVPR (2020)

    Google Scholar 

  27. Li, X., Liu, S., Kautz, J., Yang, M.H.: Learning linear transformations for fast arbitrary style transfer. In: CVPR (2019)

    Google Scholar 

  28. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: NeurIPS (2017)

    Google Scholar 

  29. Li, Y., Liu, M.Y., Li, X., Yang, M.H., Kautz, J.: A closed-form solution to photorealistic image stylization. In: ECCV (2018)

    Google Scholar 

  30. Liu, S., et al.: AdaAttN: revisit attention mechanism in arbitrary neural style transfer. In: ICCV (2021)

    Google Scholar 

  31. Liu, X., et al.: Open-edit: open-domain image manipulation with open-vocabulary instructions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 89–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_6

    Chapter  Google Scholar 

  32. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: CVPR (2017)

    Google Scholar 

  33. Nam, S., Kim, Y., Kim, S.J.: Text-adaptive generative adversarial networks: manipulating images with natural language. In: NeurIPS (2018)

    Google Scholar 

  34. Nichol, A., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. In: arXiv:2112.10741 (2021)

  35. Park, D.Y., Lee, K.H.: Arbitrary style transfer with style-attentional networks. In: CVPR (2019)

    Google Scholar 

  36. Park, T., et al.: Swapping autoencoder for deep image manipulation. In: NeurIPS (2020)

    Google Scholar 

  37. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleCLIP: text-driven manipulation of StyleGAN imagery. In: ICCV (2021)

    Google Scholar 

  38. Qiao, T., Zhang, J., Xu, D., Tao, D.: MirrorGAN: Learning Text-to-image Generation by Redescription. In: CVPR (2019)

    Google Scholar 

  39. Ramesh, A., et al.: Zero-shot text-to-image generation. In: arXiv:2102.12092 (2021)

  40. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)

    Google Scholar 

  41. Salehi, P., Chalechale, A., Taghizadeh, M.: Generative adversarial networks (GANs): an overview of theoretical model, evaluation metrics, and recent developments. arXiv:2005.13178 (2020)

  42. Salvo, R.D.: Large scale ground truth generation for performance evaluation of computer vision methods. In: VIGTA (2013)

    Google Scholar 

  43. Sanakoyeu, A., Kotovenko, D., Lang, S., Ommer, B.: A style-aware content loss for real-time HD style transfer. In: ECCV (2018)

    Google Scholar 

  44. Shi, L., et al.: Contrastive visual-linguistic pretraining. arXiv:2007.13135 (2020)

  45. Somavarapu, N., Ma, C.Y., Kira, Z.: Frustratingly simple domain generalization via image stylization. arXiv:2006.11207 (2020)

  46. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  47. Wang, P., Li, Y., Vasconcelos, N.: Rethinking and improving the robustness of image style transfer. In: CVPR (2021)

    Google Scholar 

  48. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncel, E.P.: Image quality assessment: from error visibility to structural similarity. In: TIP (2004)

    Google Scholar 

  49. Wu, C., et al.: GODIVA: generating open-DomaIn videos from nAtural descriptions. arXiv:2104.14806 (2021)

  50. Wu, C., Timm, M., Maji, S.: Describing textures using natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 52–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_4

    Chapter  Google Scholar 

  51. Wu, L., Wang, Y., Shao, L.: Cycle-consistent deep generative hashing for cross-modal retrieval. In: TIP (2018)

    Google Scholar 

  52. Xia, W., Yang, Y., Xue, J.H., Wu, B.: TediGAN: text-guided diverse face image generation and manipulation. In: CVPR (2021)

    Google Scholar 

  53. Xian, W., et al.: TextureGAN: controlling deep image synthesis with texture patches. In: CVPR (2018)

    Google Scholar 

  54. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  55. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: ICCV (2017)

    Google Scholar 

  56. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: ICCV (2019)

    Google Scholar 

  57. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: PMLR (2019)

    Google Scholar 

  58. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  59. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: CVPR (2019)

    Google Scholar 

  60. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgments

Research was sponsored by the U.S. Army Research Office and was accomplished under Contract Number W911NF-19-D-0001 for the Institute for Collaborative Biotechnologies. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsu-Jui Fu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9698 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, TJ., Wang, X.E., Wang, W.Y. (2022). Language-Driven Artistic Style Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13696. Springer, Cham. https://doi.org/10.1007/978-3-031-20059-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20059-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20058-8

  • Online ISBN: 978-3-031-20059-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics