Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MeshMAE: Masked Autoencoders for 3D Mesh Data Analysis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Recently, self-supervised pre-training has advanced Vision Transformers on various tasks w.r.t. different data modalities, e.g., image and 3D point cloud data. In this paper, we explore this learning paradigm for 3D mesh data analysis based on Transformers. Since applying Transformer architectures to new modalities is usually non-trivial, we first adapt Vision Transformer to 3D mesh data processing, i.e., Mesh Transformer. In specific, we divide a mesh into several non-overlapping local patches with each containing the same number of faces and use the 3D position of each patch’s center point to form positional embeddings. Inspired by MAE, we explore how pre-training on 3D mesh data with the Transformer-based structure benefits downstream 3D mesh analysis tasks. We first randomly mask some patches of the mesh and feed the corrupted mesh into Mesh Transformers. Then, through reconstructing the information of masked patches, the network is capable of learning discriminative representations for mesh data. Therefore, we name our method MeshMAE, which can yield state-of-the-art or comparable performance on mesh analysis tasks, i.e., classification and segmentation. In addition, we also conduct comprehensive ablation studies to show the effectiveness of key designs in our method.

Y. Liang—This work was done during Y. Liang’s internship at JD Explore Academy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adobe.com: animate 3d characters for games, film, and more. Accessed 24 2021. https://www.mixamo.com (2021)

  2. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: ICCV, pp. 37–45 (2015)

    Google Scholar 

  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM Transactions on Graphics (TOG), pp. 408–416 (2005)

    Google Scholar 

  4. Aumentado-Armstrong, T., Tsogkas, S., Jepson, A., Dickinson, S.: Geometric disentanglement for generative latent shape models. In: CVPR, pp. 8181–8190 (2019)

    Google Scholar 

  5. Bao, H., Dong, L., Wei, F.: Beit: bert pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)

  6. Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3d mesh registration. In: CVPR, pp. 3794–3801 (2014)

    Google Scholar 

  7. Brown, T., et al.: Language models are few-shot learners. NeurIPS 33, 1877–1901 (2020)

    Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  9. Chen, C.F., Fan, Q., Panda, R.: CrossViT: cross-attention multi-scale vision transformer for image classification. arXiv preprint arXiv:2103.14899 (2021)

  10. Chen, M., et al.: Generative pretraining from pixels. In: ICML, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  11. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurIPS, pp. 17864–17875 (2021)

    Google Scholar 

  12. Conneau, A., Lample, G.: Cross-lingual language model pretraining. In: NeurIPS, pp. 7059–7069 (2019)

    Google Scholar 

  13. Cosmo, L., Norelli, A., Halimi, O., Kimmel, R., Rodolà, E.: LIMP: learning latent shape representations with metric preservation priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 19–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_2

    Chapter  Google Scholar 

  14. Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: CVPR, pp. 1601–1610 (2021)

    Google Scholar 

  15. Davide, B., Jonathan, M., Simone, M., Michael, M.B., Umberto, C., Pierre, V.: Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Comput. Graph. Forum 34(5), 13–23 (2015)

    Article  Google Scholar 

  16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  17. Ding, L., et al.: Looking outside the window: wide-context transformer for the semantic segmentation of high-resolution remote sensing images. arXiv preprint arXiv:2106.15754 (2021)

  18. Dosovitskiy, A., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. In: ICLR (2020)

    Google Scholar 

  19. Feng, Y., Feng, Y., You, H., Zhao, X., Gao, Y.: MeshNet: mesh neural network for 3d shape representation. In: AAAI, pp. 8279–8286 (2019)

    Google Scholar 

  20. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  21. Giorgi, D., Biasotti, S., Paraboschi, L.: Shape retrieval contest 2007: watertight models track. SHREC Compet. 8(7) (2007)

    Google Scholar 

  22. Guan, S., Xu, J., Wang, Y., Ni, B., Yang, X.: Bilevel online adaptation for out-of-domain human mesh reconstruction. In: CVPR, pp. 10472–10481 (2021)

    Google Scholar 

  23. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Visual Media 7(2), 187–199 (2021)

    Article  Google Scholar 

  24. Haim, N., Segol, N., Ben-Hamu, H., Maron, H., Lipman, Y.: Surface networks via general covers. In: ICCV, pp. 632–641 (2019)

    Google Scholar 

  25. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohenor, D.: MeshCNN: a network with an edge. ACM Trans. Graph. (TOG) 38(4), 90 (2019)

    Article  Google Scholar 

  26. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR, pp. 16000–16009 (2022)

    Google Scholar 

  27. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2018)

    Google Scholar 

  28. Hu, S.-M., Liang, D., Yang, G.-Y., Yang, G.-W., Zhou, W.-Y.: Jittor: a novel deep learning framework with meta-operators and unified graph execution. Sci. China Inf. Sci. 63(12), 1–21 (2020). https://doi.org/10.1007/s11432-020-3097-4

    Article  MathSciNet  Google Scholar 

  29. Hu, S.M., et al.: Subdivision-based mesh convolution networks. ACM Trans. Graph. (TOG) (2021)

    Google Scholar 

  30. Huang, L., Tan, J., Liu, J., Yuan, J.: Hand-transformer: non-autoregressive structured modeling for 3d hand pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 17–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_2

    Chapter  Google Scholar 

  31. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)

    Article  Google Scholar 

  32. Lahav, A., Tal, A.: MeshWalker: deep mesh understanding by random walks. ACM Trans. Graph. (TOG) 39(6), 1–13 (2020)

    Article  Google Scholar 

  33. Lee, A.W., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.: Maps: multiresolution adaptive parameterization of surfaces. In: ACM SIGGRAPH, pp. 95–104 (1998)

    Google Scholar 

  34. Li, W., Liu, H., Tang, H., Wang, P., Van Gool, L.: MHFormer: multi-hypothesis transformer for 3d human pose estimation. arXiv preprint arXiv:2111.12707 (2021)

  35. Li, Z., Liu, X., Drenkow, N., Ding, A., Creighton, F.X., Taylor, R.H., Unberath, M.: Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6197–6206 (2021)

    Google Scholar 

  36. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: CVPR, pp. 1954–1963 (2021)

    Google Scholar 

  37. Lin, K., Wang, L., Liu, Z.: Mesh graphormer. arXiv preprint arXiv:2104.00272 (2021)

  38. Liu, H.T.D., Kim, V.G., Chaudhuri, S., Aigerman, N., Jacobson, A.: Neural subdivision. arXiv preprint arXiv:2005.01819 (2020)

  39. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  40. Maron, H., et al.: Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. (TOG) 36(4), 71–1 (2017)

    Article  Google Scholar 

  41. Milano, F., Loquercio, A., Rosinol, A., Scaramuzza, D., Carlone, L.: Primal-dual mesh convolutional neural networks. NeurIPS 33, 952–963 (2020)

    Google Scholar 

  42. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object detection. In: CVPR, pp. 2906–2917 (2021)

    Google Scholar 

  43. Monti, F., Shchur, O., Bojchevski, A., Litany, O., Günnemann, S., Bronstein, M.M.: Dual-primal graph convolutional networks. arXiv preprint arXiv:1806.00770 (2018)

  44. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: PolyGen: an autoregressive generative model of 3d meshes. In: PMLR, pp. 7220–7229. PMLR (2020)

    Google Scholar 

  45. Pathak, D., Girshick, R., Dollár, P., Darrell, T., Hariharan, B.: Learning features by watching objects move. In: CVPR, pp. 2701–2710 (2017)

    Google Scholar 

  46. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  47. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  48. Rolfe, J.T.: Discrete variational autoencoders. arXiv preprint arXiv:1609.02200 (2016)

  49. Saleh, M., Wu, S.C., Cosmo, L., Navab, N., Busam, B., Tombari, F.: Bending graphs: Hierarchical shape matching using gated optimal transport. In: CVPR (2022)

    Google Scholar 

  50. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: ACM SIGGRAPH Computer Graphics, pp. 151–160 (1986)

    Google Scholar 

  51. Tianyu, L., Yali, W., Junhao, Z., Zhe, W., Zhipeng, Z., Yu, Q.: PC-HMR: pose calibration for 3d human mesh recovery from 2d images/videos. In: AAAI, pp. 2269–2276. AAAI Press (2021)

    Google Scholar 

  52. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICLR, pp. 10347–10357 (2021)

    Google Scholar 

  53. Trappolini, G., Cosmo, L., Moschella, L., Marin, R., Melzi, S., Rodolà, E.: Shape registration in the time of transformers. In: NeurIPS, pp. 5731–5744 (2021)

    Google Scholar 

  54. Trinh, T.H., Luong, M.T., Le, Q.V.: Selfie: self-supervised pretraining for image embedding. arXiv preprint arXiv:1906.02940 (2019)

  55. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  56. Verma, N., Boyer, E., Verbeek, J.: FeaStNet: feature-steered graph convolutions for 3d shape analysis. In: CVPR, pp. 2598–2606 (2018)

    Google Scholar 

  57. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. In: ACM SIGGRAPH, pp. 1–9 (2008)

    Google Scholar 

  58. Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C.: MaX-DeepLab: end-to-end panoptic segmentation with mask transformers. In: CVPR, pp. 5463–5474 (2021)

    Google Scholar 

  59. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: ICCV, pp. 2794–2802 (2015)

    Google Scholar 

  60. Wang, Y., Asafi, S., Van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    Article  Google Scholar 

  61. Xu, Y., Zhang, Q., Zhang, J., Tao, D.: Vitae: vision transformer advanced by exploring intrinsic inductive bias. In: NeurIPS, pp. 28522–28535 (2021)

    Google Scholar 

  62. Yang, G., Tang, H., Ding, M., Sebe, N., Ricci, E.: Transformer-based attention networks for continuous pixel-wise prediction. In: CVPR, pp. 16269–16279 (2021)

    Google Scholar 

  63. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In: ICCV, pp. 12498–12507 (2021)

    Google Scholar 

  64. Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-BERT: pre-training 3d point cloud transformers with masked point modeling. arXiv preprint arXiv:2111.14819 (2021)

  65. Zhang, Q., Xu, Y., Zhang, J., Tao, D.: Vitaev2: vision transformer advanced by exploring inductive bias for image recognition and beyond. arXiv preprint arXiv:2202.10108 (2022)

  66. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV, pp. 16259–16268 (2021)

    Google Scholar 

  67. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)

    Google Scholar 

  68. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62072348. Dr. Baosheng Yu and Dr. Jing Zhang are supported by ARC Project FL-170100117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazhi He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 640 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y., Zhao, S., Yu, B., Zhang, J., He, F. (2022). MeshMAE: Masked Autoencoders for 3D Mesh Data Analysis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20062-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20061-8

  • Online ISBN: 978-3-031-20062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics