Abstract
Being able to learn an effective semantic representation directly on raw point clouds has become a central topic in 3D understanding. Despite rapid progress, state-of-the-art encoders are restrictive to canonicalized point clouds, and have weaker than necessary performance when encountering geometric transformation distortions. To overcome this challenge, we propose PointTree, a general-purpose point cloud encoder that is robust to transformations based on relaxed K-D trees. Key to our approach is the design of the division rule in K-D trees by using principal component analysis (PCA). We use the structure of the relaxed K-D tree as our computational graph, and model the features as border descriptors which are merged with pointwise-maximum operation. In addition to this novel architecture design, we further improve the robustness by introducing pre-alignment – a simple yet effective PCA-based normalization scheme. Our PointTree encoder combined with pre-alignment consistently outperforms state-of-the-art methods by large margins, for applications from object classification to semantic segmentation on various transformed versions of the widely-benchmarked datasets. Code and pre-trained models are available at https://github.com/immortalCO/PointTree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, P.K., Arge, L., Danner, A.: From point cloud to grid DEM: A scalable approach. In: International Symposium on Spatial Data Handling (2006)
Armeni, I., Sax, A., Zamir, A.R., Savarese, S.: Joint 2D–3D-semantic data for indoor scene understanding. arXiv: 1702.01105 (2017)
Chang, A.X., et al.: ShapeNet: An information-rich 3D model repository. arXiv: 1512.03012 (2015)
Duch, A., Estivill-Castro, V., Martinez, C.: Randomized K-dimensional binary search trees. In: International Symposium on Algorithms and Computation (1998)
Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3D point cloud processing. arxiv: 1807.03520 (2018)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)
Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L.: Bennamoun: Deep learning for 3D point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: IEEE and ACM International Symposium on Mixed and Augmented Reality (2007)
Klokov, R., Lempitsky, V.: Escape from cells: Deep Kd-Networks for the recognition of 3D point cloud models. In: ICCV (2017)
Lei, H., Akhtar, N., Mian, A.S.: Octree guided CNN with spherical kernels for 3D point clouds. In: CVPR (2019)
Li, F., Fujiwara, K., Okura, F., Matsushita, Y.: A closer look at rotation-invariant deep point cloud analysis. In: ICCV (2021)
Li, X., Li, R., Chen, G., Fu, C.W., Cohen-Or, D., Heng, P.A.: A rotation-invariant framework for deep point cloud analysis. IEEE Trans. Vis. Comput. Graph. 4503–4514 (2021)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on X-transformed points. In: NeurIPS (2018)
Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: DensePoint: Learning densely contextual representation for efficient point cloud processing. In: ICCV (2019)
Lv, X., Wang, B., Dou, Z., Ye, D., Wang, S.: LCCNet: LiDAR and camera self-calibration using cost volume network. In: CVPRW (2021)
Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: A simple residual MLP framework. In: ICLR (2022)
Qi, C.R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)
Qiu, S., Anwar, S., Barnes, N.: Geometric feedback network for point cloud classification. arXiv: 1911.12885 (2019)
Que, Z., Lu, G., Xu, D.: VoxelContext-Net: An octree based framework for point cloud compression. arXiv: 2105.02158 (2021)
Riegler, G., Ulusoy, A., Geiger, A.: OctNet: Learning deep 3D representations at high resolutions. In: CVPR (2017)
Shen, W., Zhang, B., Huang, S., Wei, Z., Zhang, Q.: 3D-rotation-equivariant quaternion neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 531–547. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_32
Siekański, P., Paśko, S., Malowany, K., Malesa, M.: Online correction of the mutual miscalibration of multimodal VIS-IR sensors and 3D data on a UAV platform for surveillance applications. Remote Sensing 11(21) (2019)
Sun, J., Zhang, Q., Kailkhura, B., Yu, Z., Xiao, C., Mao, Z.M.: Benchmarking robustness of 3D point cloud recognition against common corruptions. arXiv: 2201.12296 (2022)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5) (2019)
Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D shapenets for 2.5D object recognition and next-best-view prediction. arXiv: 1406.5670 (2014)
Xiang, B., Tu, J., Yao, J., Li, L.: A novel octree-based 3-D fully convolutional neural network for point cloud classification in road environment. IEEE Trans. Geosci. Remote Sens. 57(10), 7799–7818 (2019)
Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: Learning curves for point clouds shape analysis. In: ICCV (2021)
Xu, M., Zhang, J., Zhou, Z., Xu, M., Qi, X., Qiao, Y.: Learning geometry-disentangled representation for complementary understanding of 3D object point cloud. In: AAAI (2021)
Yi, L., et al.: Large-scale 3D shape reconstruction and segmentation from ShapeNet Core55. arXiv: 1710.06104 (2017)
Yuan, W., Held, D., Mertz, C., Hebert, M.: Iterative transformer network for 3D point cloud. arXiv: 1811.11209 (2018)
Zeng, W., Gevers, T.: 3DContextNet: K-d tree guided hierarchical learning of point clouds using local and global contextual cues. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 314–330. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_24
Zhang, X., Zhu, S., Guo, S., Li, J., Liu, H.: Line-based automatic extrinsic calibration of lidar and camera. In: ICRA (2021)
Zhang, Y., Rabbat, M.G.: A graph-CNN for 3D point cloud classification. In: ICASSP (2018)
Zhao, C., Yang, J., Xiong, X., Zhu, A., Cao, Z., Li, X.: Rotation invariant point cloud classification: Where local geometry meets global topology. Pattern Recogn. 127(C) (2019)
Acknowledgement
This work was supported in part by NSF Grant 2106825, the Jump ARCHES endowment through the Health Care Engineering Systems Center, the New Frontiers Initiative, the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign through the NCSA Fellows program, and the IBM-Illinois Discovery Accelerator Institute.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, JK., Wang, YX. (2022). PointTree: Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13663. Springer, Cham. https://doi.org/10.1007/978-3-031-20062-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-20062-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20061-8
Online ISBN: 978-3-031-20062-5
eBook Packages: Computer ScienceComputer Science (R0)