Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identity-Aware Hand Mesh Estimation and Personalization from RGB Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13665))

Included in the following conference series:

  • 2530 Accesses

Abstract

Reconstructing 3D hand meshes from monocular RGB images has attracted increasing amount of attention due to its enormous potential applications in the field of AR/VR. Most state-of-the-art methods attempt to tackle this task in an anonymous manner. Specifically, the identity of the subject is ignored even though it is practically available in real applications where the user is unchanged in a continuous recording session. In this paper, we propose an identity-aware hand mesh estimation model, which can incorporate the identity information represented by the intrinsic shape parameters of the subject. We demonstrate the importance of the identity information by comparing the proposed identity-aware model to a baseline which treats subject anonymously. Furthermore, to handle the use case where the test subject is unseen, we propose a novel personalization pipeline to calibrate the intrinsic shape parameters using only a few unlabeled RGB images of the subject. Experiments on two large scale public datasets validate the state-of-the-art performance of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003. Proceedings, vol. 2, pp. II-432. IEEE (2003)

    Google Scholar 

  2. Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for rgb-based dense 3d hand pose estimation via neural rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1067–1076 (2019)

    Google Scholar 

  3. Beddiar, D.R., Nini, B., Sabokrou, M., Hadid, A.: Vision-based human activity recognition: a survey. Multimedia Tools Appl. 79(41), 30509–30555 (2020). https://doi.org/10.1007/s11042-020-09004-3

    Article  Google Scholar 

  4. Boukhayma, A., Bem, R.d., Torr, P.H.: 3d hand shape and pose from images in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10843–10852 (2019)

    Google Scholar 

  5. Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3d hand pose estimation from monocular rgb images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 666–682 (2018)

    Google Scholar 

  6. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Article  Google Scholar 

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  8. Chao, Y.W., et al.: Dexycb: a benchmark for capturing hand grasping of objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9044–9053 (2021)

    Google Scholar 

  9. Chen, X., et al.: Camera-space hand mesh recovery via semantic aggregation and adaptive 2d–1d registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13274–13283 (2021)

    Google Scholar 

  10. Chen, Y., et al.: Nonparametric structure regularization machine for 2d hand pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 381–390 (2020)

    Google Scholar 

  11. Ge, L., et al.: 3d hand shape and pose estimation from a single rgb image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10833–10842 (2019)

    Google Scholar 

  12. Ge, L., Ren, Z., Yuan, J.: Point-to-point regression pointnet for 3d hand pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  13. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3d annotation of hand and object poses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3196–3206 (2020)

    Google Scholar 

  14. Hampali, S., Sarkar, S.D., Rad, M., Lepetit, V.: Keypoint transformer: solving joint identification in challenging hands and object interactions for accurate 3d pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11090–11100 (2022)

    Google Scholar 

  15. Han, S., Liu, B., Cabezas, R., Twigg, C.D., Zhang, P., Petkau, J., Yu, T.H., Tai, C.J., Akbay, M., Wang, Z., et al.: Megatrack: monochrome egocentric articulated hand-tracking for virtual reality. ACM Trans. Graph. (TOG) 39(4), 1–87 (2020)

    Article  Google Scholar 

  16. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11807–11816 (2019)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kong, D., Chen, Y., Ma, H., Yan, X., Xie, X.: Adaptive graphical model network for 2d handpose estimation. arXiv preprint arXiv:1909.08205 (2019)

  20. Kong, D., Ma, H., Chen, Y., Xie, X.: Rotation-invariant mixed graphical model network for 2d hand pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1546–1555 (2020)

    Google Scholar 

  21. Kong, D., Ma, H., Xie, X.: Sia-gcn: a spatial information aware graph neural network with 2d convolutions for hand pose estimation. arXiv preprint arXiv:2009.12473 (2020)

  22. Kulon, D., Guler, R.A., Kokkinos, I., Bronstein, M.M., Zafeiriou, S.: Weakly-supervised mesh-convolutional hand reconstruction in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4990–5000 (2020)

    Google Scholar 

  23. Lim, I., Dielen, A., Campen, M., Kobbelt, L.: A simple approach to intrinsic correspondence learning on unstructured 3d meshes. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  24. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1954–1963 (2021)

    Google Scholar 

  25. Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12939–12948 (2021)

    Google Scholar 

  26. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  27. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  28. Ma, H., et al.: Transfusion: cross-view fusion with transformer for 3d human pose estimation. arXiv preprint arXiv:2110.09554 (2021)

  29. Moon, G., Chang, J.Y., Lee, K.M.: V2v-posenet: voxel-to-voxel prediction network for accurate 3d hand and human pose estimation from a single depth map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5088 (2018)

    Google Scholar 

  30. Moon, G., Lee, K.M.: I2L-MeshNet: image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 752–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_44

    Chapter  Google Scholar 

  31. Moon, G., Shiratori, T., Lee, K.M.: DeepHandMesh: a weakly-supervised deep encoder-decoder framework for high-fidelity hand mesh modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 440–455. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_26

    Chapter  Google Scholar 

  32. Moon, G., Yu, S.-I., Wen, H., Shiratori, T., Lee, K.M.: InterHand2.6M: a dataset and baseline for 3D interacting hand pose estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 548–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_33

    Chapter  Google Scholar 

  33. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  34. Park, J., Oh, Y., Moon, G., Choi, H., Lee, K.M.: Handoccnet: Occlusion-robust 3d hand mesh estimation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1496–1505 (2022)

    Google Scholar 

  35. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  36. Pytorch: Pytorch margin ranking loss (2022). https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html

  37. Qian, N., Wang, J., Mueller, F., Bernard, F., Golyanik, V., Theobalt, C.: HTML: a parametric hand texture model for 3D hand reconstruction and personalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 54–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_4

    Chapter  Google Scholar 

  38. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (ToG) 36(6), 1–17 (2017)

    Article  Google Scholar 

  39. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1145–1153 (2017)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  41. Spurr, A., Iqbal, U., Molchanov, P., Hilliges, O., Kautz, J.: Weakly supervised 3D hand pose estimation via biomechanical constraints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 211–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_13

    Chapter  Google Scholar 

  42. Tan, D.J., et al.: Fits like a glove: rapid and reliable hand shape personalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610–5619 (2016)

    Google Scholar 

  43. Tkach, A., Tagliasacchi, A., Remelli, E., Pauly, M., Fitzgibbon, A.: Online generative model personalization for hand tracking. ACM Trans. Graph. (ToG) 36(6), 1–11 (2017)

    Article  Google Scholar 

  44. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  45. Wang, Y., Peng, C., Liu, Y.: Mask-pose cascaded cnn for 2d hand pose estimation from single color image. IEEE Trans. Circuits Syst. Video Technol. 29(11), 3258–3268 (2018)

    Article  Google Scholar 

  46. Wang, Z., Chen, L., Rathore, S., Shin, D., Fowlkes, C.: Geometric pose affordance: 3d human pose with scene constraints. In: Arxiv 1905.07718 (2019)

    Google Scholar 

  47. Wang, Z., Shin, D., Fowlkes, C.C.: Predicting camera viewpoint improves cross-dataset generalization for 3D human pose estimation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_36

    Chapter  Google Scholar 

  48. Wang, Z., Yang, J., Fowlkes, C.: The best of both worlds: combining model-based and nonparametric approaches for 3d human body estimation. In: CVPR ABAW Workshop (2022)

    Google Scholar 

  49. Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: After-unet: axial fusion transformer unet for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3971–3981 (2022)

    Google Scholar 

  50. Yang, L., Li, J., Xu, W., Diao, Y., Lu, C.: Bihand: recovering hand mesh with multi-stage bisected hourglass networks. arXiv preprint arXiv:2008.05079 (2020)

  51. Yu, Z., et al.: Humbi: a large multiview dataset of human body expressions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2990–3000 (2020)

    Google Scholar 

  52. Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular rgb image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2354–2364 (2019)

    Google Scholar 

  53. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)

    Google Scholar 

  54. Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single rgb images. Technical report, arXiv:1705.01389 (2017). https://lmb.informatik.uni-freiburg.de/projects/hand3d/, https://arxiv.org/abs/1705.01389

  55. Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single rgb images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4903–4911 (2017)

    Google Scholar 

  56. Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: Freihand: a dataset for markerless capture of hand pose and shape from single rgb images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 813–822 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deying Kong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 262 KB)

Supplementary material 2 (zip 13698 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, D. et al. (2022). Identity-Aware Hand Mesh Estimation and Personalization from RGB Images. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20065-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics