Abstract
Reconstructing 3D hand meshes from monocular RGB images has attracted increasing amount of attention due to its enormous potential applications in the field of AR/VR. Most state-of-the-art methods attempt to tackle this task in an anonymous manner. Specifically, the identity of the subject is ignored even though it is practically available in real applications where the user is unchanged in a continuous recording session. In this paper, we propose an identity-aware hand mesh estimation model, which can incorporate the identity information represented by the intrinsic shape parameters of the subject. We demonstrate the importance of the identity information by comparing the proposed identity-aware model to a baseline which treats subject anonymously. Furthermore, to handle the use case where the test subject is unseen, we propose a novel personalization pipeline to calibrate the intrinsic shape parameters using only a few unlabeled RGB images of the subject. Experiments on two large scale public datasets validate the state-of-the-art performance of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003. Proceedings, vol. 2, pp. II-432. IEEE (2003)
Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for rgb-based dense 3d hand pose estimation via neural rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1067–1076 (2019)
Beddiar, D.R., Nini, B., Sabokrou, M., Hadid, A.: Vision-based human activity recognition: a survey. Multimedia Tools Appl. 79(41), 30509–30555 (2020). https://doi.org/10.1007/s11042-020-09004-3
Boukhayma, A., Bem, R.d., Torr, P.H.: 3d hand shape and pose from images in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10843–10852 (2019)
Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3d hand pose estimation from monocular rgb images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 666–682 (2018)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chao, Y.W., et al.: Dexycb: a benchmark for capturing hand grasping of objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9044–9053 (2021)
Chen, X., et al.: Camera-space hand mesh recovery via semantic aggregation and adaptive 2d–1d registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13274–13283 (2021)
Chen, Y., et al.: Nonparametric structure regularization machine for 2d hand pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 381–390 (2020)
Ge, L., et al.: 3d hand shape and pose estimation from a single rgb image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10833–10842 (2019)
Ge, L., Ren, Z., Yuan, J.: Point-to-point regression pointnet for 3d hand pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3d annotation of hand and object poses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3196–3206 (2020)
Hampali, S., Sarkar, S.D., Rad, M., Lepetit, V.: Keypoint transformer: solving joint identification in challenging hands and object interactions for accurate 3d pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11090–11100 (2022)
Han, S., Liu, B., Cabezas, R., Twigg, C.D., Zhang, P., Petkau, J., Yu, T.H., Tai, C.J., Akbay, M., Wang, Z., et al.: Megatrack: monochrome egocentric articulated hand-tracking for virtual reality. ACM Trans. Graph. (TOG) 39(4), 1–87 (2020)
Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11807–11816 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kong, D., Chen, Y., Ma, H., Yan, X., Xie, X.: Adaptive graphical model network for 2d handpose estimation. arXiv preprint arXiv:1909.08205 (2019)
Kong, D., Ma, H., Chen, Y., Xie, X.: Rotation-invariant mixed graphical model network for 2d hand pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1546–1555 (2020)
Kong, D., Ma, H., Xie, X.: Sia-gcn: a spatial information aware graph neural network with 2d convolutions for hand pose estimation. arXiv preprint arXiv:2009.12473 (2020)
Kulon, D., Guler, R.A., Kokkinos, I., Bronstein, M.M., Zafeiriou, S.: Weakly-supervised mesh-convolutional hand reconstruction in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4990–5000 (2020)
Lim, I., Dielen, A., Campen, M., Kobbelt, L.: A simple approach to intrinsic correspondence learning on unstructured 3d meshes. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1954–1963 (2021)
Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12939–12948 (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Ma, H., et al.: Transfusion: cross-view fusion with transformer for 3d human pose estimation. arXiv preprint arXiv:2110.09554 (2021)
Moon, G., Chang, J.Y., Lee, K.M.: V2v-posenet: voxel-to-voxel prediction network for accurate 3d hand and human pose estimation from a single depth map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5088 (2018)
Moon, G., Lee, K.M.: I2L-MeshNet: image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 752–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_44
Moon, G., Shiratori, T., Lee, K.M.: DeepHandMesh: a weakly-supervised deep encoder-decoder framework for high-fidelity hand mesh modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 440–455. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_26
Moon, G., Yu, S.-I., Wen, H., Shiratori, T., Lee, K.M.: InterHand2.6M: a dataset and baseline for 3D interacting hand pose estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 548–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_33
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Park, J., Oh, Y., Moon, G., Choi, H., Lee, K.M.: Handoccnet: Occlusion-robust 3d hand mesh estimation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1496–1505 (2022)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Pytorch: Pytorch margin ranking loss (2022). https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
Qian, N., Wang, J., Mueller, F., Bernard, F., Golyanik, V., Theobalt, C.: HTML: a parametric hand texture model for 3D hand reconstruction and personalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 54–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_4
Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (ToG) 36(6), 1–17 (2017)
Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1145–1153 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Spurr, A., Iqbal, U., Molchanov, P., Hilliges, O., Kautz, J.: Weakly supervised 3D hand pose estimation via biomechanical constraints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 211–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_13
Tan, D.J., et al.: Fits like a glove: rapid and reliable hand shape personalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610–5619 (2016)
Tkach, A., Tagliasacchi, A., Remelli, E., Pauly, M., Fitzgibbon, A.: Online generative model personalization for hand tracking. ACM Trans. Graph. (ToG) 36(6), 1–11 (2017)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)
Wang, Y., Peng, C., Liu, Y.: Mask-pose cascaded cnn for 2d hand pose estimation from single color image. IEEE Trans. Circuits Syst. Video Technol. 29(11), 3258–3268 (2018)
Wang, Z., Chen, L., Rathore, S., Shin, D., Fowlkes, C.: Geometric pose affordance: 3d human pose with scene constraints. In: Arxiv 1905.07718 (2019)
Wang, Z., Shin, D., Fowlkes, C.C.: Predicting camera viewpoint improves cross-dataset generalization for 3D human pose estimation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_36
Wang, Z., Yang, J., Fowlkes, C.: The best of both worlds: combining model-based and nonparametric approaches for 3d human body estimation. In: CVPR ABAW Workshop (2022)
Yan, X., Tang, H., Sun, S., Ma, H., Kong, D., Xie, X.: After-unet: axial fusion transformer unet for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3971–3981 (2022)
Yang, L., Li, J., Xu, W., Diao, Y., Lu, C.: Bihand: recovering hand mesh with multi-stage bisected hourglass networks. arXiv preprint arXiv:2008.05079 (2020)
Yu, Z., et al.: Humbi: a large multiview dataset of human body expressions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2990–3000 (2020)
Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular rgb image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2354–2364 (2019)
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)
Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single rgb images. Technical report, arXiv:1705.01389 (2017). https://lmb.informatik.uni-freiburg.de/projects/hand3d/, https://arxiv.org/abs/1705.01389
Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single rgb images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4903–4911 (2017)
Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: Freihand: a dataset for markerless capture of hand pose and shape from single rgb images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 813–822 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kong, D. et al. (2022). Identity-Aware Hand Mesh Estimation and Personalization from RGB Images. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-20065-6_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20064-9
Online ISBN: 978-3-031-20065-6
eBook Packages: Computer ScienceComputer Science (R0)