Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Domain Adaptive Hand Keypoint and Pixel Localization in the Wild

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

We aim to improve the performance of regressing hand keypoints and segmenting pixel-level hand masks under new imaging conditions (e.g., outdoors) when we only have labeled images taken under very different conditions (e.g., indoors). In the real world, it is important that the model trained for both tasks works under various imaging conditions. However, their variation covered by existing labeled hand datasets is limited. Thus, it is necessary to adapt the model trained on the labeled images (source) to unlabeled images (target) with unseen imaging conditions. While self-training domain adaptation methods (i.e., learning from the unlabeled target images in a self-supervised manner) have been developed for both tasks, their training may degrade performance when the predictions on the target images are noisy. To avoid this, it is crucial to assign a low importance (confidence) weight to the noisy predictions during self-training. In this paper, we propose to utilize the divergence of two predictions to estimate the confidence of the target image for both tasks. These predictions are given from two separate networks, and their divergence helps identify the noisy predictions. To integrate our proposed confidence estimation into self-training, we propose a teacher-student framework where the two networks (teachers) provide supervision to a network (student) for self-training, and the teachers are learned from the student by knowledge distillation. Our experiments show its superiority over state-of-the-art methods in adaptation settings with different lighting, grasping objects, backgrounds, and camera viewpoints. Our method improves by \(4\%\) the multi-task score on HO3D compared to the latest adversarial adaptation method. We also validate our method on Ego4D, egocentric videos with rapid changes in imaging conditions outdoors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., Pishchulin, L., Gehler, P.V., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3686–3693 (2014)

    Google Scholar 

  2. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020)

    Google Scholar 

  3. Benitez-Garcia, G., et al.: Improving real-time hand gesture recognition with semantic segmentation. Sensors 21(2), 356 (2021)

    Article  Google Scholar 

  4. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training. In: Proceedings of the ACM Annual Conference on Computational Learning Theory (COLT), pp. 92–100 (1998)

    Google Scholar 

  5. Boukhayma, A., Bem, R.D., Torr, P.H.S.: 3D hand shape and pose from images in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10843–10852 (2019)

    Google Scholar 

  6. Brahmbhatt, S., Tang, C., Twigg, C.D., Kemp, C.C., Hays, J.: ContactPose: a dataset of grasps with object contact and hand pose. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 361–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_22

    Chapter  Google Scholar 

  7. Cai, M., Lu, F., Sato, Y.: Generalizing hand segmentation in egocentric videos with uncertainty-guided model adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14380–14389 (2020)

    Google Scholar 

  8. Cai, M., Luo, M., Zhong, X., Chen, H.: Uncertainty-aware model adaptation for unsupervised cross-domain object detection. CoRR, abs/2108.12612 (2021)

    Google Scholar 

  9. Cai, Q., Pan, Y., Ngo, C.-W., Tian, X., Duan, L., Yao, T.: Exploring object relation in mean teacher for cross-domain detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11457–11466 (2019)

    Google Scholar 

  10. Çalli, B., Walsman, A., Singh, A., Srinivasa, S.S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: using the Yale-CMU-Berkeley object and model set. IEEE Robot. Autom. Mag. 22(3), 36–52 (2015)

    Article  Google Scholar 

  11. Cao, J., Tang, H., Fang, H., Shen, X., Tai, Y.-W., Lu, C.: Cross-domain adaptation for animal pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9497–9506 (2019)

    Google Scholar 

  12. Cao, Z., Radosavovic, I., Kanazawa, A., Malik, J.: Reconstructing hand-object interactions in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 12417–12426 (2021)

    Google Scholar 

  13. Chao, Y.-W., et al.: DexYCB: a benchmark for capturing hand grasping of objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9044–9053 (2021)

    Google Scholar 

  14. Chen, C.-H., et al.: Unsupervised 3D pose estimation with geometric self-supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5714–5724 (2019)

    Google Scholar 

  15. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 2456–2464 (2011)

    Google Scholar 

  16. Chen, X., Wang, G., Zhang, C., Kim, T.-K., Ji, X.: SHPR-Net: deep semantic hand pose regression from point clouds. IEEE Access 6, 43425–43439 (2018)

    Article  Google Scholar 

  17. Damen, D., et al.: Rescaling egocentric vision. Int. J. Comput. Vision (IJCV) (2021)

    Google Scholar 

  18. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4091–4101 (2021)

    Google Scholar 

  19. French, G., Mackiewicz, M., Fisher, M.H.: Self-ensembling for visual domain adaptation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  20. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2427–2436 (2019)

    Google Scholar 

  21. Fu, Q., Liu, X., Kitani, K.M.: Sequential decision-making for active object detection from hand. CoRR, abs/2110.11524 (2021)

    Google Scholar 

  22. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning (ICML), pp. 1050–1059 (2016)

    Google Scholar 

  23. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on Machine Learning (ICML), pp. 1180–1189 (2015)

    Google Scholar 

  24. Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.-K.: First-person hand action benchmark with RGB-D videos and 3D hand pose annotations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 409–419 (2018)

    Google Scholar 

  25. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. In Proceedings of the International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  26. Glauser, O., Wu, S., Panozzo, D., Hilliges, O., Sorkine-Hornung, O.: Interactive hand pose estimation using a stretch-sensing soft glove. ACM Trans. Graph. 38(4), 41:1-41:15 (2019)

    Article  Google Scholar 

  27. Goudie, D., Galata, A.: 3D hand-object pose estimation from depth with convolutional neural networks. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 406–413 (2017)

    Google Scholar 

  28. Grauman, K., et al.: Ego4D: around the world in 3,000 hours of egocentric video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18995–19012 (2022)

    Google Scholar 

  29. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and object poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3196–3206 (2020)

    Google Scholar 

  30. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11807–11816 (2019)

    Google Scholar 

  31. Hidalgo, G., et al.: OpenPose. https://github.com/CMU-Perceptual-Computing-Lab/openpose

  32. Huang, W., Ren, P., Wang, J., Qi, Q., Sun, H.: AWR: adaptive weighting regression for 3D hand pose estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 11061–11068 (2020)

    Google Scholar 

  33. Jiang, J., Ji, Y., Wang, X., Liu, Y., Wang, J., Long, M.: Regressive domain adaptation for unsupervised keypoint detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6780–6789 (2021)

    Google Scholar 

  34. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3334–3342 (2015)

    Google Scholar 

  35. Kim, S., Chi, H.-G., Hu, X., Vegesana, A., Ramani, K.: First-person view hand segmentation of multi-modal hand activity video dataset. In: Proceedings of the British Machine Vision Conference (BMVC) (2020)

    Google Scholar 

  36. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  37. Lee, K., Shrivastava, A., Kacorri, H.: Hand-priming in object localization for assistive egocentric vision. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3422–3432 (2020)

    Google Scholar 

  38. Li, Y.-J., et al.: Cross-domain object detection via adaptive self-training. CoRR, abs/2111.13216 (2021)

    Google Scholar 

  39. Liang, H., Yuan, J., Thalmann, D., Magnenat-Thalmann, N.: AR in hand: egocentric palm pose tracking and gesture recognition for augmented reality applications. In: Proceedings of the ACM International Conference on Multimedia (MM), pp. 743–744 (2015)

    Google Scholar 

  40. Likitlersuang, J., Sumitro, E.R., Cao, T., Visée, R.J., Kalsi-Ryan, S., Zariffa, J.: Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home. J. Neuroeng. Rehabil. (JNER) 16(1), 83 (2019)

    Article  Google Scholar 

  41. Liu, Y.-C., et al.: Unbiased teacher for semi-supervised object detection. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  42. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 136–144 (2016)

    Google Scholar 

  43. Lu, Y., Mayol-Cuevas, W.W.: Understanding egocentric hand-object interactions from hand pose estimation. CoRR, abs/2109.14657 (2021)

    Google Scholar 

  44. McKee, R., McKee, D., Alexander, D., Paillat, E.: NZ sign language exercises. Deaf Studies Department of Victoria University of Wellington. http://www.victoria.ac.nz/llc/llc_resources/nzsl

  45. Melas-Kyriazi, L., Manrai, A.K.: Pixmatch: unsupervised domain adaptation via pixelwise consistency training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12435–12445 (2021)

    Google Scholar 

  46. Moon, G., Yu, S.-I., Wen, H., Shiratori, T., Lee, K.M.: InterHand2.6M: a dataset and baseline for 3D interacting hand pose estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 548–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_33

    Chapter  Google Scholar 

  47. Mueller, F., et al.: GANerated hands for real-time 3D hand tracking from monocular RGB. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–59 (2018)

    Google Scholar 

  48. Mueller, F., Mehta, D., Sotnychenko, O., Sridhar, S., Casas, D., Theobalt, C.: Real-time hand tracking under occlusion from an egocentric RGB-D sensor. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1163–1172 (2017)

    Google Scholar 

  49. Neverova, N., Wolf, C., Nebout, F., Taylor, G.W.: Hand pose estimation through semi-supervised and weakly-supervised learning. Comput. Vis. Image Underst. 164, 56–67 (2017)

    Article  Google Scholar 

  50. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  51. Ohkawa, T., Furuta, R., Sato, Y.: Efficient annotation and learning for 3D hand pose estimation: a survey. CoRR, abs/2206.02257 (2022)

    Google Scholar 

  52. Ohkawa, T., Inoue, N., Kataoka, H., Inoue, N.: Augmented cyclic consistency regularization for unpaired image-to-image translation. In: Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 362–369 (2020)

    Google Scholar 

  53. Ohkawa, T., Yagi, T., Hashimoto, A., Ushiku, Y., Sato, Y.: Foreground-aware stylization and consensus pseudo-labeling for domain adaptation of first-person hand segmentation. IEEE Access 9, 94644–94655 (2021)

    Article  Google Scholar 

  54. Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11557–11568 (2021)

    Google Scholar 

  55. Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: SENTRY: selective entropy optimization via committee consistency for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 8558–8567 (2021)

    Google Scholar 

  56. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1106–1113 (2014)

    Google Scholar 

  57. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_9

    Chapter  Google Scholar 

  58. Ren, P., Sun, H., Qi, Q., Wang, J., Huang, W.: SRN: stacked regression network for real-time 3D hand pose estimation. In: Proceedings of the British Machine Vision Conference (BMVC) (2019)

    Google Scholar 

  59. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 2988–2997 (2017)

    Google Scholar 

  60. Santavas, N., Kansizoglou, I., Bampis, L., Karakasis, E., Gasteratos, A.: Attention! A lightweight 2D hand pose estimation approach. CoRR, abs/2001.08047 (2020)

    Google Scholar 

  61. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4645–4653 (2017)

    Google Scholar 

  62. Sridhar, S., Mueller, F., Zollhoefer, M., Casas, D., Oulasvirta, A., Theobalt, C.: Real-time joint tracking of a hand manipulating an object from RGB-D input. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 294–310 (2016)

    Google Scholar 

  63. Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: GRAB: a dataset of whole-body human grasping of objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 581–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_34

    Chapter  Google Scholar 

  64. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  65. Urooj, A., Borji, A.: Analysis of hand segmentation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4710–4719 (2018)

    Google Scholar 

  66. Vasconcelos, L.O., Mancini, M., Boscaini, D., Bulò, S.R., Caputo, B., Ricci, E.: Shape consistent 2D keypoint estimation under domain shift. In: Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 8037–8044 (2020)

    Google Scholar 

  67. Vu, T.H., Jain, H., Bucher, M., Cord, M., Perez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2512–2521 (2019)

    Google Scholar 

  68. Wang, Y., Peng, C., Liu, Y.: Mask-pose cascaded CNN for 2D hand pose estimation from single color image. IEEE Trans. Circuits Syst. Video Technol. (TCSVT) 29(11), 3258–3268 (2019)

    Article  Google Scholar 

  69. Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4732 (2016)

    Google Scholar 

  70. Wu, M.-Y., Ting, P.-W., Tang, Y.-H., Chou, E.T., Fu, L.-C.: Hand pose estimation in object-interaction based on deep learning for virtual reality applications. J. Vis. Commun. Image Represent. 70, 102802 (2020)

    Google Scholar 

  71. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  72. Yan, L., Fan, B., Xiang, S., Pan, C.: CMT: cross mean teacher unsupervised domain adaptation for VHR image semantic segmentation. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Article  Google Scholar 

  73. Yang, L., Chen, S., Yao, A.: Semihand: semi-supervised hand pose estimation with consistency. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 11364–11373 (2021)

    Google Scholar 

  74. Yang, L., Li, J., Xu, W., Diao, Y., Lu, C.: Bihand: recovering hand mesh with multi-stage bisected hourglass networks. In: Proceedings of the British Machine Vision Conference (BMVC) (2020)

    Google Scholar 

  75. Yuan, S., Ye, Q., Stenger, B., Jain, S., Kim, T.K.: BigHand2.2M benchmark: hand pose dataset and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2605–2613 (2017)

    Google Scholar 

  76. Zhang, C., Wang, G., Chen, X., Xie, P., Yamasaki, T.: Weakly supervised segmentation guided hand pose estimation during interaction with unknown objects. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), pp. 2673–2677 (2020)

    Google Scholar 

  77. Zhou, X., Karpur, A., Gan, C., Luo, L., Huang, Q.: Unsupervised domain adaptation for 3D keypoint estimation via view consistency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 141–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_9

    Chapter  Google Scholar 

  78. Zimmermann, C., Argus, M., Brox, T.: Contrastive representation learning for hand shape estimation. CoRR, abs/2106.04324 (2021)

    Google Scholar 

  79. Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4913–4921 (2017)

    Google Scholar 

  80. Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: FreiHAND: a dataset for markerless capture of hand pose and shape from single RGB images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 813–822 (2019)

    Google Scholar 

  81. Zou, Y., Yu, Z., Kumar, B.V., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by JST ACT-X Grant Number JPMJAX2007, JSPS Research Fellowships for Young Scientists, JST AIP Acceleration Research Grant Number JPMJCR20U1, and JSPS KAKENHI Grant Number JP20H04205, Japan. This work was also supported in part by a hardware donation from Yu Darvish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Ohkawa .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5962 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohkawa, T., Li, YJ., Fu, Q., Furuta, R., Kitani, K.M., Sato, Y. (2022). Domain Adaptive Hand Keypoint and Pixel Localization in the Wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics