Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Swarm Intelligence for Multi-objective Portfolio Optimization

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13655))

Included in the following conference series:

  • 1248 Accesses

Abstract

This paper employs five classical multi-objective swarm intelligence algorithms to solve portfolio optimization (PO) problem with background returns. The potential investment ratio is considered as an individual. In the experiments, we consider five different PO cases. The simulation results show that multi-objective evolutionary algorithm based on decomposition (MOEA/D) and weighted optimization framework (WOF) perform significantly better than the other four in solving the high-dimensional objective problem, and WOF obtains a more uniform solution to the high-dimensional problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  2. Niu, B., Xue, B., Li, L., Chai, Y.: Symbiotic multi-swarm PSO for portfolio optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 776–784. Springer, Heidelberg (2009)

    Google Scholar 

  3. Yin, X., Ni, Q., Zhai, Y.: A novel particle swarm optimization for portfolio optimization based on random population topology strategies. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI-CCI 2015. LNCS, vol. 9140, pp. 164–175. Springer, Heidelberg (2015)

    Google Scholar 

  4. Niu, B., Bi, Y., Xie, T.: Structure-redesign-based bacterial foraging optimization for portfolio selection. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 424–430. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09330-7_49

    Chapter  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. J. Trans. Evol. Comput. 6(2), 182–197 (2022)

    Google Scholar 

  6. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Proceedings of the Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

  7. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. J. Trans. Evol. Comput. 11(6), 712–731 (2007)

    Google Scholar 

  8. Coello Coello, C.A., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.1051–1056 (2002)

    Google Scholar 

  9. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. J. Trans. Evol. Comput. 22(2), 260–275 (2018)

    Google Scholar 

Download references

Acknowledgement

The work was supported by The Natural Science Foundation of Guangdong Province (No. 2020A1515010752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Wang, Y., Liu, J., Tan, L. (2023). Swarm Intelligence for Multi-objective Portfolio Optimization. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds) Machine Learning for Cyber Security. ML4CS 2022. Lecture Notes in Computer Science, vol 13655. Springer, Cham. https://doi.org/10.1007/978-3-031-20096-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20096-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20095-3

  • Online ISBN: 978-3-031-20096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics