Abstract
This paper employs five classical multi-objective swarm intelligence algorithms to solve portfolio optimization (PO) problem with background returns. The potential investment ratio is considered as an individual. In the experiments, we consider five different PO cases. The simulation results show that multi-objective evolutionary algorithm based on decomposition (MOEA/D) and weighted optimization framework (WOF) perform significantly better than the other four in solving the high-dimensional objective problem, and WOF obtains a more uniform solution to the high-dimensional problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
Niu, B., Xue, B., Li, L., Chai, Y.: Symbiotic multi-swarm PSO for portfolio optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 776–784. Springer, Heidelberg (2009)
Yin, X., Ni, Q., Zhai, Y.: A novel particle swarm optimization for portfolio optimization based on random population topology strategies. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI-CCI 2015. LNCS, vol. 9140, pp. 164–175. Springer, Heidelberg (2015)
Niu, B., Bi, Y., Xie, T.: Structure-redesign-based bacterial foraging optimization for portfolio selection. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 424–430. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09330-7_49
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. J. Trans. Evol. Comput. 6(2), 182–197 (2022)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Proceedings of the Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. J. Trans. Evol. Comput. 11(6), 712–731 (2007)
Coello Coello, C.A., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.1051–1056 (2002)
Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. J. Trans. Evol. Comput. 22(2), 260–275 (2018)
Acknowledgement
The work was supported by The Natural Science Foundation of Guangdong Province (No. 2020A1515010752).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, L., Wang, Y., Liu, J., Tan, L. (2023). Swarm Intelligence for Multi-objective Portfolio Optimization. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds) Machine Learning for Cyber Security. ML4CS 2022. Lecture Notes in Computer Science, vol 13655. Springer, Cham. https://doi.org/10.1007/978-3-031-20096-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-20096-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20095-3
Online ISBN: 978-3-031-20096-0
eBook Packages: Computer ScienceComputer Science (R0)