Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Conversion of Elastic Energy Stored in the Legs of a Hexapod Robot into Propulsive Force

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Abstract

The conversion of elastic energy due to ground reaction force into propulsive force can help increase the locomotion speed of a legged robot. Many legged robots inspired by animals have been developed, which utilize the elasticity of their legs to increase the efficiency of locomotion. An example is RHex, a hexapod robot that has C-shaped legs. These robots are designed using the spring loaded inverted pendulum (SLIP) model. In contrast, we proposed a new leg design (i.e., D-shaped leg) and an optimization method in which the speed can be increased by kicking the ground strongly in the opposite direction of locomotion due to the elastic force accumulated in the legs. An experiment with a hexapod robot demonstrated that the walking speed could be increased by up to 89% compared to the speed obtained by C-shaped legs. This result can be applied to the design of hands, grippers, and robot bodies to store external force in the flexible body, introduce new functions, and improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Octopus, a Grasshopper plug-in: https://www.food4rhino.com/en/app/octopus.

References

  1. Moore, E.Z.: Leg design and stair climbing control for the RHex robotic hexapod. Masters thesis (2002)

    Google Scholar 

  2. Birkmeyer, P., Peterson, K., Fearing, R.S.: DASH: a dynamic 16g hexapedal robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2683–2689 (2009)

    Google Scholar 

  3. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S.: How animals move: an integrative view. Science 288, 100–106 (2000)

    Article  Google Scholar 

  4. Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989)

    Article  Google Scholar 

  5. Hubicki, C., et al.: ATRIAS: design and validation of a tether-free 3D-capable spring-mass bipedal robot. Int. J. Robot. Res. 35, 1497–1521 (2016)

    Article  Google Scholar 

  6. Farley, C.T., Glasheen, J., McMahon, T.A.: Running springs: speed and animal size. J. Exp. Biol. 185, 71–86 (1993)

    Article  Google Scholar 

  7. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)

    Article  Google Scholar 

  8. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008)

    Article  Google Scholar 

  9. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013)

    Article  Google Scholar 

  10. Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired “soft" robotics. Commun. ACM 55, 76–87 (2012)

    Article  Google Scholar 

  11. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26, 709–727 (2012)

    Article  Google Scholar 

  12. Calisti, M., Picardi, G., Laschi, C.: Fundamentals of soft robot locomotion. J. Roy. Soc. Interface 14, 1–2 (2017)

    Google Scholar 

  13. Galloway, K.C., Clark, J.E., Koditschek, D.E.: Variable stiffness legs for robust, efficient, and stable dynamic running. J. Mech. Robot. 5, 011009 (2013)

    Article  Google Scholar 

  14. Galloway, K.C., Clark, J.E., Yim, M., Koditschek, D.E.: Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1243–1249 (2011)

    Google Scholar 

  15. Mahkam, N., Yilmaz, T.B., Ozcan, O.: Smooth and inclined surface locomotion and obstacle scaling of a C-legged miniature modular robot. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), pp. 9–14 (2021)

    Google Scholar 

  16. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32, 932–950 (2013)

    Article  Google Scholar 

  17. Brown, B., Zeglin, G.: The bow leg hopping robot. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pp. 781–786 (1998)

    Google Scholar 

  18. Tsuda, T., Mochiyama, H., Fujimoto, H.: Quick stair-climbing using snap-through buckling of closed elastica. In: 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS), pp. 368–373 (2012)

    Google Scholar 

  19. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19, 45–76 (2011)

    Article  Google Scholar 

  20. Ohshima, T., Tachi, T., Yamaguchi, Y.: Analysis and design of elastic materials formed using 2D repetitive slit pattern. In: Proceedings of the International Association for Shell and Spatial Structures Symposium, IASS 2015, pp. 526418:1–526418:12 (2015)

    Google Scholar 

  21. Timoshenko, S.: Strength of Materials, Vol. I : Elementary Theory and Problems (English Edition). CBS Publishers & Distributors Pvt Ltd. (2004)

    Google Scholar 

  22. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20, 616–631 (2001)

    Article  Google Scholar 

  23. Weingarten, J.D., Lopes, G.A.D., Buehler, M., Groff, R.E., Koditschek, D.E.: Automated gait adaptation for legged robots. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2153–2158 (2004)

    Google Scholar 

Download references

Acknowledgement

Supported by KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Science of Soft Robot” project funded by JSPS under Grant Number 18H05467, and Grant-in-Aid for Scientific Research (B) under Grant Number 21H01289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kaneko .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 64015 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaneko, A., Shimizu, M., Umedachi, T. (2022). Conversion of Elastic Energy Stored in the Legs of a Hexapod Robot into Propulsive Force. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics