Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Audio-Visual Multi-person Keyword Spotting via Hybrid Fusion

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Abstract

As an important research method for speech recognition tasks, audio-visual fusion has achieved good performances in improving the robustness of keyword spotting (KWS) models, especially in a noisy environment. However, most related studies are implemented under the single-person scenarios, while ignoring the application in multi-person scenarios. In this work, an audio-visual model using the hybrid fusion is proposed for multi-person KWS. In detail, a speaker detection model based on the attention mechanism is firstly used in the visual frontend to select the key visual signals corresponding to the speaker. Then, semantic features of audio signals and visual signals are extracted by using two pre-trained feature extraction networks. Finally, in order to exploit the complementarity and independence of the signals from two modalities from the feature and decision level, the features are fed into the proposed hybrid fusion module. In addition, the first Chinese keyword spotting dataset named PKU-KWS is recorded. Experiments on this dataset demonstrate the reliability of the proposed method for practical applications. Meanwhile, the model also shows stable performance under different noise intensities.

Supported by the National Key R &D Program of China (No. 2020AAA0108904), and the Science and Technology Plan of Shenzhen (No. JCYJ20200109140410340).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pang, C., Liu, H., Zhang, J., Li, X.: Binaural sound localization based on reverberation weighting and generalized parametric mapping. IEEE/ACM Trans. Audio Speech Lang. Process. 25(8), 1618–1632 (2017). https://doi.org/10.1109/TASLP.2017.2703650

    Article  Google Scholar 

  2. Wöllmer, M., Eyben, F., Keshet, J., Graves, A., Schuller, B., Rigoll, G.: Robust discriminative keyword spotting for emotionally colored spontaneous speech using bidirectional LSTM networks, pp. 3949–3952 (2009). https://doi.org/10.1109/ICASSP.2009.4960492

  3. Karakos, D., et al.: Score normalization and system combination for improved keyword spotting. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 210–215 (2013). https://doi.org/10.1109/ASRU.2013.6707731

  4. Kim, B., Chang, S., Lee, J., Sung, D.: Broadcasted residual learning for efficient keyword spotting. arXiv preprint arXiv:2106.04140 (2021)

  5. Li, Y., Liu, H., Tang, H.: Multi-modal perception attention network with self-supervised learning for audio-visual speaker tracking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1456–1463 (2022)

    Google Scholar 

  6. Zheng, H., Wang, M., Li, Z.: Audio-visual speaker identification with multi-view distance metric learning, pp. 4561–4564 (2010). https://doi.org/10.1109/ICIP.2010.5653016

  7. Stewart, D., Seymour, R., Pass, A., Ming, J.: Robust audio-visual speech recognition under noisy audio-video conditions. IEEE Trans. Cybern. 44(2), 175–184 (2014). https://doi.org/10.1109/TCYB.2013.2250954

    Article  Google Scholar 

  8. Miao, Y., Gowayyed, M., Metze, F.: EESEN: end-to-end speech recognition using deep RNN models and WFST-based decoding. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 167–174. IEEE (2015)

    Google Scholar 

  9. López-Espejo, I., Tan, Z.H., Hansen, J., Jensen, J.: Deep spoken keyword spotting: an overview. IEEE Access (2021)

    Google Scholar 

  10. Wu, P., Liu, H., Li, X., Fan, T., Zhang, X.: A novel lip descriptor for audio-visual keyword spotting based on adaptive decision fusion. IEEE Trans. Multimedia 18(3), 326–338 (2016)

    Article  Google Scholar 

  11. Ding, R., Pang, C., Liu, H.: Audio-visual keyword spotting based on multidimensional convolutional neural network. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4138–4142. IEEE (2018)

    Google Scholar 

  12. Momeni, L., Afouras, T., Stafylakis, T., Albanie, S., Zisserman, A.: Seeing wake words: audio-visual keyword spotting. arXiv preprint arXiv:2009.01225 (2020)

  13. Katsaggelos, A.K., Bahaadini, S., Molina, R.: Audiovisual fusion: challenges and new approaches. Proc. IEEE 103(9), 1635–1653 (2015). https://doi.org/10.1109/JPROC.2015.2459017

    Article  Google Scholar 

  14. Liu, H., Li, W., Yang, B.: Robust audio-visual speech recognition based on hybrid fusion. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7580–7586 (2021). https://doi.org/10.1109/ICPR48806.2021.9412817

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Kim, J., Jun, J., Zhang, B.: Bilinear attention networks. CoRR (2018). arXiv:1805.07932

  17. Braga, O., Siohan, O.: A closer look at audio-visual multi-person speech recognition and active speaker selection. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6863–6867. IEEE (2021)

    Google Scholar 

  18. Afouras, T., Chung, J.S., Senior, A., Vinyals, O., Zisserman, A.: Deep audio-visual speech recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  19. Petridis, S., Stafylakis, T., Ma, P., Cai, F., Tzimiropoulos, G., Pantic, M.: End-to-end audiovisual speech recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6548–6552. IEEE (2018)

    Google Scholar 

  20. Chen, S., et al.: WavLM: large-scale self-supervised pre-training for full stack speech processing. arXiv preprint arXiv:2110.13900 (2021)

  21. Shi, B., Hsu, W.N., Mohamed, A.: Robust self-supervised audio-visual speech recognition. arXiv preprint arXiv:2201.01763 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, Y., Miao, Z., Liu, H. (2022). Audio-Visual Multi-person Keyword Spotting via Hybrid Fusion. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics