Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Intelligence Approach for Blood Pressure Estimation from Photoplethysmography Signal

  • Conference paper
  • First Online:
Health Information Science (HIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13705))

Included in the following conference series:

  • 624 Accesses

Abstract

Commercial cuff-based Blood pressure (BP) devices are mainly not suitable or portable. To ease the measurement of BP devices, we proposed a new model for BP estimation based on photoplethysmography (PPG) signal. PPG signals are segmented into cycles using an improved peak detection algorithm. Then, each segment is mapped into a graph. Graph wavelets transform (GWT) is applied to each segment. The spectral graph features are extracted and tested to assess the BP. A ridge regression is employed to evaluated the BP with the reference of PPG. A publica dataset is used to evaluate the proposed model. The proposed model achieved good results and the obtained results are promising in improving the accuracy of BP estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharifi, I., Goudarzi, S., Khodabakhshi, M.B.: A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals. Artif. Intell. Med. 97, 143–151 (2019)

    Article  Google Scholar 

  2. Mousavi, S.S., Firouzmand, M., Charmi, M., Hemmati, M., Moghadam, M., Ghorbani, Y.: Blood pressure estimation from appropriate and inappropriate PPG signals using a whole-based method. Biomed. Signal Process. Control 47, 196–206 (2019)

    Article  Google Scholar 

  3. Li, Y.H., Harfiya, L.N., Purwandari, K., Lin, Y.D.: Real-time cuffless continuous blood pressure estimation using deep learning model. Sensors 20(19), 5606 (2020)

    Article  Google Scholar 

  4. Alghamdi, A.S., Polat, K., Alghoson, A., Alshdadi, A.A., Abd El-Latif, A.A.: A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods. Appl. Acoust. 164, 107279 (2020)

    Google Scholar 

  5. Senturk, U., Polat, K., Yucedag, I.: A non-invasive continuous cuffless blood pressure estimation using dynamic recurrent neural networks. Appl. Acoust. 170, 107534 (2020)

    Article  Google Scholar 

  6. Kachuee, M., Kiani, M.M., Mohammadzade, H., Shabany, M.: Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans. Biomed. Eng. 64(4), 859–869 (2016)

    Article  Google Scholar 

  7. Kim, J.S., Kim, K.K., Baek, H.J., Park, K.S.: Effect of confounding factors on blood pressure estimation using pulse arrival time. Physiol. Meas. 29(5), 615 (2008)

    Article  Google Scholar 

  8. Wibmer, T., et al.: Pulse transit time and blood pressure during cardiopulmonary exercise tests. Physiol. Res. 63(3), 287–296 (2014)

    Google Scholar 

  9. Hennig, A., Patzak, A.: Continuous blood pressure measurement using pulse transit time. Somnologie - Schlafforschung Und Schlafmedizin 17(2), 104–110 (2013)

    Article  Google Scholar 

  10. Wong, M.Y.-M., Poon, C.C.-Y., Zhang, Y.-T.: An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc. Eng. 9(1), 32–38 (2009)

    Google Scholar 

  11. Pan, F., et al.: Development and validation of a deep learning-based automatic auscultatory blood pressure measurement method. Biomed. Signal Process. Control 68, 102742 (2021)

    Article  Google Scholar 

  12. Miao, F., et al.: Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artif. Intell. Med. 108, 101919 (2020)

    Article  Google Scholar 

  13. Ghommem, M., Puzyrev, V., Najar, F.: Deep learning for simultaneous measurements of pressure and temperature using arch resonators. Appl. Math. Model. 93, 728–744 (2021)

    Article  MathSciNet  Google Scholar 

  14. Su, P., Ding, X.R., Zhang, Y.T., Liu, J., Miao, F., Zhao, N.: Long-term blood pressure prediction with deep recurrent neural networks. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 323–328. IEEE, March 2018

    Google Scholar 

  15. Diykh, M., Li, Y., Wen, P.: EEG sleep stages classification based on time domain features and structural graph similarity. IEEE Trans. Neural Syst. Rehabil. Eng. 24(11), 1159–1168 (2016)

    Article  Google Scholar 

  16. Diykh, M., Li, Y., Wen, P., Li, T.: Complex networks approach for depth of anesthesia assessment. Measurement 119, 178–189 (2018)

    Article  Google Scholar 

  17. Diykh, M., et al.: Texture analysis based graph approach for automatic detection of neonatal seizure from multi-channel EEG signals. Measurement 190, 110731 (2022)

    Article  Google Scholar 

  18. Diykh, M., Miften, F.S., Abdulla, S., Saleh, K., Green, J.H.: Robust approach to depth of anaesthesia assessment based on hybrid transform and statistical features. IET Sci. Meas. Technol. 14(1), 128–136 (2020)

    Article  Google Scholar 

  19. Miften, F.S., Diykh, M., Abdulla, S., Siuly, S., Green, J.H., Deo, R.C.: A new framework for classification of multi-category hand grasps using EMG signals. Artif. Intell. Med. 112, 102005 (2021)

    Article  Google Scholar 

  20. Diykh, M., Abdulla, S., Saleh, K., Deo, R.C.: Fractal dimension undirected correlation graph-based support vector machine model for identification of focal and non-focal electroencephalography signals. Biomed. Signal Process. Control 54, 101611 (2019)

    Article  Google Scholar 

  21. El Hajj, C., Kyriacou, P.A.: Cuffless and continuous blood pressure estimation from PPG signals using recurrent neural networks. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4269–4272. IEEE, July 2020

    Google Scholar 

  22. Schlesinger, O., Vigderhouse, N., Eytan, D., Moshe, Y.: Blood pressure estimation from PPG signals using convolutional neural networks and Siamese network. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1135–1139. IEEE, May 2020

    Google Scholar 

  23. Xing, X., Ma, Z., Zhang, M., Zhou, Y., Dong, W., Song, M.: An unobtrusive and calibration-free blood pressure estimation method using photoplethysmography and biometrics. Sci. Rep. 9(1), 1–8 (2019)

    Article  Google Scholar 

  24. Khare, S.K., Bajaj, V., Sengur, A., Sinha, G.R.: Classification of mental states from rational dilation wavelet transform and bagged tree classifier using EEG signals. In: Artificial Intelligence-Based Brain-Computer Interface, pp. 217–235. Academic Press (2022)

    Google Scholar 

  25. Khare, S.K., Bajaj, V.: A hybrid decision support system for automatic detection of Schizophrenia using EEG signals. Comput. Biol. Med. 141, 105028 (2022)

    Article  Google Scholar 

  26. Sharma, S., Khare, S.K., Bajaj, V., Ansari, I.A.: Improving the separability of drowsiness and alert EEG signals using analytic form of wavelet transform. Appl. Acoust. 181, 108164 (2021)

    Article  Google Scholar 

  27. Alsafy, I., Diykh, M.: Developing a robust model to predict depth of anesthesia from single channel EEG signal. Phys. Eng. Sci. Med. 1–16 (2022)

    Google Scholar 

  28. Majeed, R.R., Alkhafaji, S.K.: ECG classification system based on multi-domain features approach coupled with least square support vector machine (LS-SVM). Comput. Methods Biomech. Biomed. Eng. 1–8 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Diykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdulla, S., Diykh, M., AlKhafaji, S.K.D., Oudah, A.Y., Marhoon, H.A., Azeez, R.A. (2022). An Intelligence Approach for Blood Pressure Estimation from Photoplethysmography Signal. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20627-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20626-9

  • Online ISBN: 978-3-031-20627-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics