Abstract
Person re-identification is a challenging task because of the high intra-class variance induced by the unrestricted nuisance factors of variations such as pose, illumination, viewpoint, background, and sensor noise. Recent approaches postulate that powerful architectures have the capacity to learn feature representations invariant to nuisance factors, by training them with losses that minimize intra-class variance and maximize inter-class separation, without modeling nuisance factors explicitly. The dominant approaches use either a discriminative loss with margin, like the softmax loss with the additive angular margin, or a metric learning loss, like the triplet loss with batch hard mining of triplets. Since the softmax imposes feature normalization, it limits the gradient flow supervising the feature embedding. We address this by joining the losses and leveraging the triplet loss as a proxy for the missing gradients. We further improve invariance to nuisance factors by adding the discriminative task of predicting attributes. Our extensive evaluation highlights that when only a holistic representation is learned, we consistently outperform the state-of-the-art on the three most challenging datasets. Such representations are easier to deploy in practical systems. Finally, we found that joining the losses removes the requirement for having a margin in the softmax loss while increasing performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: IEEE CVPR, pp. 3908–3916 (2015)
Bak, S., Carr, P.: One-shot metric learning for person re-identification. In: IEEE CVPR, pp. 2990–2999 (2017)
Chen, D., Xu, D., Li, H., Sebe, N., Wang, X.: Group consistent similarity learning via deep CRF for person re-identification. In: IEEE CVPR, pp. 8649–8658 (2018)
Chikontwe, P., Lee, H.J.: Deep multi-task network for learning person identity and attributes. IEEE Access 6, 60801–60811 (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE CVPR, pp. 248–255. IEEE (2009)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. arXiv:1801.07698 (2018)
Fan, X., Jiang, W., Luo, H., Fei, M.: SphereReID: deep hypersphere manifold embedding for person re-identification. J. Vis. Commun. Image Representation 60, 51–58 (2019)
Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: IEEE CVPR, pp. 2360–2367. IEEE (2010)
Ge, Y., et al.: FD-GAN: pose-guided feature distilling GAN for robust person re-identification. In: NeurIPS, pp. 1222–1233 (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778. IEEE (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv:1703.07737 (2017)
Hirzer, M., Roth, P.M., Köstinger, M., Bischof, H.: Relaxed pairwise learned metric for person re-identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 780–793. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_56
Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Interaction-and-aggregation network for person re-identification. In: IEEE CVPR, pp. 9317–9326 (2019)
Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: IEEE CVPR, pp. 384–393 (2017)
Li, S., Yu, H., Hu, R.: Attributes-aided part detection and refinement for person re-identification. Pattern Rec. 97, 107016 (2020)
Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning of multi-loss classification. In: IJCAI, IJCAI 2017, pp. 2194–2200. AAAI Press (2017)
Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: IEEE CVPR, pp. 2197–2206 (2015)
Lin, Y., et al.: Improving person re-identification by attribute and identity learning. Pattern Rec. 95, 151–161 (2019)
Liu, C., Gong, S., Loy, C.C., Lin, X.: Person re-identification: what features are important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_39
Liu, J., Zha, Z.J., Xie, H., Xiong, Z., Zhang, Y.: CA3Net: contextual-attentional attribute-appearance network for person re-identification. In: ACM Multimedia, pp. 737–745 (2018)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. arXiv (2017)
Ma, B., Su, Y., Jurie, F.: BiCov: a novel image representation for person re-identification and face verification (2012)
Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
Pedagadi, S., Orwell, J., Velastin, S., Boghossian, B.: Local fisher discriminant analysis for pedestrian re-identification. In: IEEE CVPR, pp. 3318–3325 (2013)
Qian, X., et al.: Pose-normalized image generation for person re-identification. In: ECCV, pp. 650–667 (2018)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE CVPR, pp. 815–823 (2015)
Shen, Y., Li, H., Yi, S., Chen, D., Wang, X.: Person re-identification with deep similarity-guided graph neural network. In: ECCV, pp. 486–504 (2018)
Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: IEEE CVPR, pp. 4004–4012 (2016)
Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K.: Part-aligned bilinear representations for person re-identification. In: ECCV, pp. 402–419 (2018)
Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV, pp. 480–496 (2018)
Tay, C.P., Roy, S., Yap, K.H.: AANet: attribute attention network for person re-identifications. In: IEEE CVPR, pp. 7134–7143 (2019)
Wang, C., Zhang, Q., Huang, C., Liu, W., Wang, X.: Mancs: a multi-task attentional network with curriculum sampling for person re-identification. In: ECCV, pp. 365–381 (2018)
Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. arXiv:1704.06369 (2017)
Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. arXiv (2018)
Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: IEEE CVPR, pp. 79–88 (2018)
Zheng, W.-S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: IEEE CVPR, pp. 649–656 (2011)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. JMLR 10(2), 207–244 (2009)
Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: IEEE CVPR, pp. 1249–1258 (2016)
Yang, W., Huang, H., Zhang, Z., Chen, X., Huang, K., Zhang, S.: Towards rich feature discovery with class activation maps augmentation for person re-identification. In: IEEE CVPR, pp. 1389–1398 (2019)
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person Re-Identification: a survey and outlook. IEEE TPAMI 44(6), 2872–2893 (2022). Jun
Zhang, G., Xu, J.: Person re-identification by mid-level attribute and part-based identity learning. In: ACCV, pp. 220–231. PMLR (2018)
Zhang, L., Xiang, T., Gong, S.: Learning a discriminative null space for person re-identification. In: IEEE CVPR, pp. 1239–1248 (2016)
Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: IEEE ICCV, pp. 3219–3228 (2017)
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: IEEE ICCV, pp. 1116–1124 (2015)
Zheng, Z., Yang, X., Yu, Z., Zheng, L., Yang, Y., Kautz, J.: Joint discriminative and generative learning for person re-identification. In: IEEE CVPR, pp. 2138–2147 (2019)
Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person re-identification. arXiv:1611.05666 (2016)
Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: IEEE ICCV, pp. 3754–3762 (2017)
Acknowledgements
This material is based upon work supported in part by the National Science Foundation under Grant No. 1920920.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sabri, S.I., Randhawa, Z.A., Doretto, G. (2022). Joint Discriminative and Metric Embedding Learning for Person Re-identification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13599. Springer, Cham. https://doi.org/10.1007/978-3-031-20716-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-20716-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20715-0
Online ISBN: 978-3-031-20716-7
eBook Packages: Computer ScienceComputer Science (R0)