Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identifying Multiple Influential Nodes for Complex Networks Based on Multi-agent Deep Reinforcement Learning

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13631))

Included in the following conference series:

  • 1522 Accesses

Abstract

The identification of multiple influential nodes that influence the structure or function of a complex network has attracted much attention in recent years. Distinguished from individual significant nodes, the problem of overlapping spheres of influence among influential nodes becomes a key factor that hinders their identification. Most approaches artificially specify the spacing distance between selected nodes through graph coloring and greedy selection. However, these approaches either fail to find the best combination accurately or have high complexity. Therefore, we propose a novel identification framework, namely multi-agent identification framework (MAIF), which selects multiple influential nodes in a distributed and simultaneous manner. Based on multi-agent deep reinforcement learning, the framework introduce several optimization models and extend to complex networks to solve distributed problems. With sufficient training, MAIF can be applied to real-world problems quickly and effectively, and perform well in large-scale networks. Based on SIR model-based simulations, the effectiveness of MAIF is evaluated and compared with three baseline methods. The experimental results show that MAIF outperforms the baselines on all four real-world networks. This implies using multiple agents to find multiple influential nodes in a distributed manner is an efficient and accurate new way to differentiate from the greedy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, D.B., Lü, L.Y., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Phys. A: Stat. Mech. Its Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  2. Du, W., Ding, S.F.: A survey on multi-agent deep reinforcement learning: from the perspective of challenges and applications. Artif. Intell. Rev. 54(5), 3215–3238 (2021)

    Article  Google Scholar 

  3. Dudkina, E., Bin, M., Breen, J., Crisostomi, E., Ferraro, P., Kirkland, S., Marecek, J., Murray Smith, R., Parisini, T., Stone, L.: On node ranking in graphs (2021). arXiv:2107.09487

  4. Fan, C.J., Zeng, L., Sun, Y.Z., Liu, Y.Y.: Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2(6), 317–324 (2020)

    Article  Google Scholar 

  5. Foerster, J., Assael, I.A., De Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  6. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 2974–2982. AAAI Press (2018)

    Google Scholar 

  7. Gao, Y., Glowacka, D.: Deep gate recurrent neural network. In: Asian Conference on Machine Learning, pp. 350–365. PMLR (2016)

    Google Scholar 

  8. Gómez, S.: Centrality in networks: finding the most important nodes. In: Business and Consumer Analytics: New Ideas, p. 401 (2019)

    Google Scholar 

  9. Gronauer, S., Diepold, K.: Multi-agent deep reinforcement learning: a survey. Artif. Intell. Rev. 55(2), 895–943 (2022)

    Article  Google Scholar 

  10. Guo, C.G., Yang, L.W., Chen, X., Chen, D.B., Gao, H., Ma, J.: Influential nodes identification in complex networks via information entropy. Entropy 22(2), 242 (2020)

    Article  MathSciNet  Google Scholar 

  11. Guo, L., Lin, J.H., Guo, Q., Liu, J.G.: Identifying multiple influential spreaders in term of the distance-based coloring. Phys. Lett. A 380(7–8), 837–842 (2016)

    Article  Google Scholar 

  12. Hausknecht, M., Stone, P.: Deep recurrent Q-learning for partially observable MDPs. In: 2015 AAAI Fall Symposium Series (2015)

    Google Scholar 

  13. Holme, P.: Epidemiologically optimal static networks from temporal network data. PLoS Comput. Biol. 9(7), e1003142 (2013)

    Article  MathSciNet  Google Scholar 

  14. Holme, P.: Temporal network structures controlling disease spreading. Phys. Rev. E 94(2), 022305 (2016)

    Article  Google Scholar 

  15. Hu, Z.L., Liu, J.G., Yang, G.Y., Ren, Z.M.: Effects of the distance among multiple spreaders on the spreading. EPL 106(1), 18002 (2014)

    Article  Google Scholar 

  16. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  17. Kraemer, L., Banerjee, B.: Multi-agent reinforcement learning as a rehearsal for decentralized planning. Neurocomputing 190, 82–94 (2016)

    Article  Google Scholar 

  18. Kunegis, J.: Konect: the koblenz network collection. In: WWW. pp. 1343–1350 (2013)

    Google Scholar 

  19. Lansdell, B.J., Prakash, P.R., Kording, K.P.: Learning to solve the credit assignment problem. In: International Conference on Learning Representations (2019)

    Google Scholar 

  20. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, L.X., Yang, Z.H., Dang, Z.K., Meng, C., Huang, J.Z., Meng, H.T., Wang, D.Y., Chen, G.H., Zhang, J.X., Peng, H.P.: Propagation analysis and prediction of the COVID-19. Infect. Dis. Model. 5, 282–292 (2020)

    Google Scholar 

  22. Lü, L.Y., Chen, D.B., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  23. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209 (2019)

    Google Scholar 

  24. Mousavi, S.S., Schukat, M., Howley, E.: Deep reinforcement learning: an overview. In: Proceedings of SAI Intelligent Systems Conference. pp. 426–440. Springer, Berlin (2016)

    Google Scholar 

  25. OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning (2019). arXiv:1908.03963

  26. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  27. Peng, L.R., Yang, W.Y., Zhang, D.Y., Zhuge, C.J., Hong, L.: Epidemic analysis of COVID-19 in China by dynamical modeling (2020). arXiv:2002.06563

  28. Ren, X.L., Gleinig, N., Helbing, D., Antulov Fantulin, N.: Generalized network dismantling. Proc. Natl. Acad. Sci. 116(14), 6554–6559 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Srinivas, S., Rajendran, C.: Community detection and influential node identification in complex networks using mathematical programming. Expert Syst. Appl. 135, 296–312 (2019)

    Article  Google Scholar 

  30. Wang, L.M., Tong, Z., Ji, B., Wu, G.S.: TDN: Temporal difference networks for efficient action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1895–1904 (2021)

    Google Scholar 

  31. Wellman, B.: The network community: an introduction. In: Networks in the Global Village, pp. 1–47. Routledge (2018)

    Google Scholar 

  32. Zhao, X.Y., Huang, B., Tang, M., Zhang, H.F., Chen, D.B.: Identifying effective multiple spreaders by coloring complex networks. EPL 108(6), 68005 (2015)

    Article  Google Scholar 

  33. Zheng, Y., Meng, Z.P., Hao, J.Y., Zhang, Z.Z.: Weighted double deep multiagent reinforcement learning in stochastic cooperative environments. In: Pacific Rim International Conference on Artificial Intelligence, pp. 421–429. Springer, Berlin (2018)

    Google Scholar 

  34. Zhong, L.F., Shang, M.S., Chen, X.L., Cai, S.M.: Identifying the influential nodes via eigen-centrality from the differences and similarities of structure. Phys. A 510, 77–82 (2018)

    Article  Google Scholar 

  35. Zhou, C., Zhang, P., Zang, W.Y., Guo, L.: Maximizing the long-term integral influence in social networks under the voter model. ACM, pp. 423–424 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, S., He, L., Zhang, G., Tao, L., Zhang, Z. (2022). Identifying Multiple Influential Nodes for Complex Networks Based on Multi-agent Deep Reinforcement Learning. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20868-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20867-6

  • Online ISBN: 978-3-031-20868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics