Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nuclear Segmentation and Classification: On Color and Compression Generalization

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2022)

Abstract

Since the introduction of digital and computational pathology as a field, one of the major problems in the clinical application of algorithms has been the struggle to generalize well to examples outside the distribution of the training data. Existing work to address this in both pathology and natural images has focused almost exclusively on classification tasks. We explore and evaluate the robustness of the 7 best performing nuclear segmentation and classification models from the largest computational pathology challenge for this problem to date, the CoNIC challenge. We demonstrate that existing state-of-the-art (SoTA) models are robust towards compression artifacts but suffer substantial performance reduction when subjected to shifts in the color domain. We find that using stain normalization to address the domain shift problem can be detrimental to the model performance. On the other hand, neural style transfer is more consistent in improving test performance when presented with large color variations in the wild.

Q. D. Vu and R. Jewsbury—Joint First Authors Contributed Equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, H., Hong, Y.: Class-controlled copy-paste based cell segmentation for conic challenge. bioRxiv (2022)

    Google Scholar 

  2. Azzuni, H., Ridzuan, M., Xu, M., Yaqub, M.: Color space-based hover-net for nuclei instance segmentation and classification. arXiv preprint arXiv:2203.01940 (2022)

  3. Böhland, M., et al.: CISCNet-a single-branch cell instance segmentation and classification network. arXiv preprint arXiv:2202.13960 (2022)

  4. Ding, X., Zhang, X., Zhou, Y., Han, J., Ding, G., Sun, J.: Scaling up your kernels to \(31\times 31\): Revisiting large kernel design in CNNs. arXiv preprint arXiv:2203.06717 (2022)

  5. Elston, C., Ellis, I.: Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 19(5), 403–410 (1991). https://doi.org/10.1111/j.1365-2559.1991.tb00229.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2559.1991.tb00229.x

  6. Fusi, A., et al.: PD-L1 expression as a potential predictive biomarker. Lancet Oncol. 16(13), 1285–7 (2015)

    Article  Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. CoRR abs/1508.06576 (2015). arxiv.org:1508.06576

  8. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. CoRR abs/1811.12231 (2018). arxiv.org:1811.12231

  9. Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. arXiv preprint arXiv:2108.11195 (2021)

  10. Graham, S., et al.: Conic: Colon nuclei identification and counting challenge 2022. CoRR abs/2111.14485 (2021). arxiv.org:abs/2111.14485

  11. Hendrycks, D., et al.: The many faces of robustness: A critical analysis of out-of-distribution generalization. CoRR abs/2006.16241 (2020). arxiv.org:abs/2006.16241

  12. Kirillov, A., He, K., Girshick, R.B., Rother, C., Dollár, P.: Panoptic segmentation. CoRR abs/1801.00868 (2018). arxiv.org:abs/1801.00868

  13. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Article  Google Scholar 

  14. Li, J., Wang, C., Huang, B., Zhou, Z.: Convnext-backbone HoverNet for nuclei segmentation and classification. arXiv preprint arXiv:2202.13560 (2022)

  15. Maier-Hein, et al.: Metrics reloaded: Pitfalls and recommendations for image analysis validation (2022). arxiv.org:abs/2206.01653

  16. Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

    Google Scholar 

  17. Rumberger, J.L., Baumann, E., Hirsch, P., Kainmueller, D.: Panoptic segmentation with highly imbalanced semantic labels. arXiv preprint arXiv:2203.11692 (2022)

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shield, K.D., et al.: The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA: Cancer J. Clin. 67(1), 51–64 (2017)

    Google Scholar 

  20. Solis, L.M., et al.: Histologic patterns and molecular characteristics of lung adenocarcinoma associated with clinical outcome. Cancer 118(11), 2889–2899 (2012)

    Article  Google Scholar 

  21. Stacke, K., Eilertsen, G., Unger, J., Lundström, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 25(2), 325–336 (2020)

    Article  Google Scholar 

  22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  23. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Article  Google Scholar 

  24. Verma, R., et al.: MoNuSAC 2020: a multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 40(12), 3413–3423 (2021). https://doi.org/10.1109/TMI.2021.3085712

    Article  Google Scholar 

  25. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. CoRR abs/1809.00219 (2018). arxiv.org:abs/1809.00219

  26. Weigert, M., Schmidt, U.: Nuclei segmentation and classification in histopathology images with stardist for the conic challenge 2022. arXiv preprint arXiv:2203.02284 (2022)

  27. Yamaguchi, T., et al.: Inter-observer agreement among pathologists in grading the pathological response to neoadjuvant chemotherapy in breast cancer. Breast Cancer 25(1), 118–125 (2018)

    Article  Google Scholar 

  28. Yamashita, R., Long, J., Banda, S., Shen, J., Rubin, D.L.: Learning domain-agnostic visual representation for computational pathology using medically-irrelevant style transfer augmentation. IEEE Trans. Med. Imaging 40(12), 3945–3954 (2021)

    Article  Google Scholar 

  29. Zhang, W.: Conic solution. arXiv preprint arXiv:2203.03415 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Jewsbury or Nasir Rajpoot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vu, Q.D. et al. (2022). Nuclear Segmentation and Classification: On Color and Compression Generalization. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21014-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21013-6

  • Online ISBN: 978-3-031-21014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics