Abstract
We study the efficiency of executing transactions in a distributed transactional memory system. The system is modeled as a wired network with the topology of a tree. Contrary to previous approaches, we allow the flexibility for both transactions and their requested objects to move simultaneously among the nodes in the tree. Given a batch of transactions and objects, the goal is to produce a schedule of executing the transactions that minimizes the cost of moving the transactions and the objects in the tree. We consider both techniques for accessing a remote object with respect to a transaction movement. In the first technique, instead of moving, transactions send control messages to remote nodes where the requested objects are gathered. In the second technique, the transactions migrate to the remote nodes where they execute. When all the transactions use a single object, we give an offline algorithm that produces optimal schedules for both techniques. For the general case of multiple objects per transaction, in the first technique, we obtain a schedule with a constant-factor approximation of optimal. In the second technique, with transactions migrating, we give a k factor approximation where k is the maximum number of objects per transaction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf (2007)
Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B., Wollrath, A.: Jini Specification. Addison-Wesley Longman Publishing (1999)
Attiya, H., Gramoli, V., Milani, A.: Directory protocols for distributed transactional memory. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Foundations, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 367–391. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14720-8_17
Bocchino Jr., R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large scale clusters. In: PPOPP, pp. 247–258. ACM (2008)
Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Time-communication impossibility results for distributed transactional memory. Distrib. Comput. 31(6), 471–487 (2018)
Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Dynamic scheduling in distributed transactional memory. In: IPDPS, pp. 874–883. IEEE (2020)
Busch, C., Herlihy, M., Popovic, M., Sharma, G.: Fast scheduling in distributed transactional memory. Theory Comput. Syst. 65(2), 296–322 (2021)
Comer, D.E.: The Cloud Computing Book: The Future of Computing Explained. Chapman and Hall/CRC (2021)
Hendler, D., Naiman, A., Peluso, S., Quaglia, F., Romano, P., Suissa, A.: Exploiting locality in lease-based replicated transactional memory via task migration. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 121–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2_9
Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures. In: ISCA, pp. 289–300. ACM (1993)
Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distrib. Comput. 20(3), 195–208 (2007)
Hirve, S., Palmieri, R., Ravindran, B.: HiperTM: high performance, fault-tolerant transactional memory. Theoret. Comput. Sci. 688, 86–102 (2017)
Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann Publishers, Burlington (2011)
Kim, J., Ravindran, B.: Scheduling transactions in replicated distributed software transactional memory. In: CCGrid, pp. 227–234. IEEE Computer Society (2013)
Kobus, T., Kokocinski, M., Wojciechowski, P.T.: Hybrid replication: state-machine-based and deferred-update replication schemes combined. In: ICDCS, pp. 286–296. IEEE Computer Society (2013)
Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concurrency in a transactional memory cluster. In: PPOPP, pp. 198–208. ACM (2006)
Palmieri, R., Peluso, S., Ravindran, B.: Transaction execution models in partially replicated transactional memory: the case for data-flow and control-flow. In: Guerraoui, R., Romano, P. (eds.) Transactional Memory. Foundations, Algorithms, Tools, and Applications. LNCS, vol. 8913, pp. 341–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14720-8_16
Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.E.T.: When scalability meets consistency: genuine multiversion update-serializable partial data replication. In: ICDCS, pp. 455–465. IEEE Computer Society (2012)
Poudel, P., Sharma, G.: GraphTM: an efficient framework for supporting transactional memory in a distributed environment. In: ICDCN, pp. 11:1–11:10. ACM (2020)
Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic live adaptation of virtual computational environments in a multi-domain infrastructure. In: ICAC, pp. 5–14. IEEE Computer Society (2006)
Saad, M.M., Ravindran, B.: HyFlow: a high performance distributed software transactional memory framework. In: HPDC, pp. 265–266. ACM (2011)
Saad, M.M., Ravindran, B.: Snake: control flow distributed software transactional memory. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 238–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-3_19
Sharma, G., Busch, C.: Distributed transactional memory for general networks. Distrib. Comput. 27(5), 329–362 (2014). https://doi.org/10.1007/s00446-014-0214-7
Sharma, G., Busch, C.: A load balanced directory for distributed shared memory objects. J. Parallel Distrib. Comput. 78, 6–24 (2015)
Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10(2), 99–116 (1997)
Siek, K., Wojciechowski, P.T.: Atomic RMI: a distributed transactional memory framework. Int. J. Parallel Prog. 44(3), 598–619 (2016)
Tilevich, E., Smaragdakis, Y.: J-Orchestra: automatic java application partitioning. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 178–204. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7_8
Zhang, B., Ravindran, B., Palmieri, R.: Distributed transactional contention management as the traveling salesman problem. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 54–67. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09620-9_6
Acknowledgements
G. Sharma was supported by National Science Foundation under Grant No. CAREER CNS-2045597.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Busch, C., Chlebus, B.S., Herlihy, M., Popovic, M., Poudel, P., Sharma, G. (2022). Flexible Scheduling of Transactional Memory on Trees. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2022. Lecture Notes in Computer Science, vol 13751. Springer, Cham. https://doi.org/10.1007/978-3-031-21017-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-21017-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21016-7
Online ISBN: 978-3-031-21017-4
eBook Packages: Computer ScienceComputer Science (R0)