Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model-Based Fault Classification for Automotive Software

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13658))

Included in the following conference series:

Abstract

Intensive testing using model-based approaches is the standard way of demonstrating the correctness of automotive software. Unfortunately, state-of-the-art techniques leave a crucial and labor intensive task to the test engineer: identifying bugs in failing tests. Our contribution is a model-based classification algorithm for failing tests that assists the engineer when identifying bugs. It consists of three steps. (i) Fault localization replays the test on the model to identify the moment when the two diverge. (ii) Fault explanation then computes the reason for the divergence. The reason is a subset of messages from the test that is sufficient for divergence. (iii) Fault classification groups together tests that fail for similar reasons. Our approach relies on machinery from formal methods: (i) symbolic execution, (ii) Hoare logic and a new relationship between the intermediary assertions constructed for a test, and (iii) a new relationship among Hoare proofs. A crucial aspect in automotive software are timing requirements, for which we develop appropriate Hoare logic theory. We also briefly report on our prototype implementation for the CAN bus Unified Diagnostic Services in an industrial project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One can show that the inclusion \( P _i\sqsubseteq _{} R _i\) is always satisfied in our setting where \(\varDelta \)-cycles are idempotent and the widenings \(\nabla \) and \(\overline{\nabla }\) simply enumerate all necessary decompositions of time progressions. Refer to [4] for a more general property.

References

  1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 1–27. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031985

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterexample traces. In: POPL, pp. 97–105. ACM (2003)

    Google Scholar 

  4. Becker, M., Meyer, R., Runge, T., Schaefer, I., van der Wall, S., Wolff, S.: Model-based fault classification for automotive software. CoRR abs/2208.14290 (2022)

    Google Scholar 

  5. Bringmann, E., Krämer, A.: Model-based testing of automotive systems. In: ICST, pp. 485–493. IEEE (2008)

    Google Scholar 

  6. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 189–208. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_13

    Chapter  Google Scholar 

  7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM (1977)

    Google Scholar 

  8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–96. ACM Press (1978)

    Google Scholar 

  9. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dickinson, W., Leon, D., Podgurski, A.: Finding failures by cluster analysis of execution profiles. In: ICSE, pp. 339–348. IEEE (2001)

    Google Scholar 

  11. DiGiuseppe, N., Jones, J.A.: Concept-based failure clustering. In: SIGSOFT FSE, p. 29. ACM (2012)

    Google Scholar 

  12. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive inference. In: OOPSLA, pp. 443–456. ACM (2013)

    Google Scholar 

  13. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6_29

    Chapter  Google Scholar 

  14. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: PLDI, pp. 213–223. ACM (2005)

    Google Scholar 

  15. Golagha, M., Lehnhoff, C., Pretschner, A., Ilmberger, H.: Failure clustering without coverage. In: ISSTA, pp. 134–145. ACM (2019)

    Google Scholar 

  16. Golagha, M., Pretschner, A., Fisch, D., Nagy, R.: Reducing failure analysis time: an industrial evaluation. In: ICSE-SEIP, pp. 293–302. IEEE (2017)

    Google Scholar 

  17. Golagha, M., Raisuddin, A.M., Mittag, L., Hellhake, D., Pretschner, A.: Aletheia: a failure diagnosis toolchain. In: ICSE (Companion Volume), pp. 13–16. ACM (2018)

    Google Scholar 

  18. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_8

    Chapter  Google Scholar 

  19. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2_8

    Chapter  Google Scholar 

  20. Guo, L., Roychoudhury, A., Wang, T.: Accurately choosing execution runs for software fault localization. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 80–95. Springer, Heidelberg (2006). https://doi.org/10.1007/11688839_7

    Chapter  Google Scholar 

  21. Haase, V.: Real-time behavior of programs. IEEE Trans. Softw. Eng. SE. 7(5), 494–501 (1981)

    Article  MATH  Google Scholar 

  22. Harder, M., Mellen, J., Ernst, M.D.: Improving test suites via operational abstraction. In: ICSE, pp. 60–73. IEEE (2003)

    Google Scholar 

  23. Haslbeck, M.P.L., Nipkow, T.: Hoare logics for time bounds. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 155–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_9

    Chapter  MATH  Google Scholar 

  24. Hooman, J.: Extending Hoare logic to real-time. Formal Aspects Comput. 6(1), 801–825 (1994). https://doi.org/10.1007/BF01213604

    Article  MATH  Google Scholar 

  25. ISO: ISO 14229–1:2020 Road vehicles – Unified diagnostic services (UDS) – Part 1: Application layer. Standard ISO 14229–1:2020, International Organization for Standardization, Geneva, CH (2020)

    Google Scholar 

  26. Jin, H.S., Ravi, K., Somenzi, F.: Fate and free will in error traces. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 445–459. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_31

    Chapter  MATH  Google Scholar 

  27. Jordan, C.V., Hauer, F., Foth, P., Pretschner, A.: Time-series-based clustering for failure analysis in hardware-in-the-loop setups: an automotive case study. In: ISSRE Workshops, pp. 67–72. IEEE (2020)

    Google Scholar 

  28. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: PLDI, pp. 437–446. ACM (2011)

    Google Scholar 

  29. King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Leitner, A., Oriol, M., Zeller, A., Ciupa, I., Meyer, B.: Efficient unit test case minimization. In: ASE, pp. 417–420. ACM (2007)

    Google Scholar 

  31. Liu, C., Han, J.: Failure proximity: a fault localization-based approach. In: SIGSOFT FSE, pp. 46–56. ACM (2006)

    Google Scholar 

  32. Lyndon, R.: An interpolation theorem in the predicate calculus. Pac. J. Math. 9, 129–142 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  33. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1

    Chapter  Google Scholar 

  34. McMillan, K.L.: Interpolation and Model Checking. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds) Handbook of Model Checking, pp. 421–446. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_14

  35. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  36. Pan, R., Bagherzadeh, M., Ghaleb, T.A., Briand, L.C.: Test case selection and prioritization using machine learning: a systematic literature review. Empir. Softw. Eng. 27(2), 29 (2022)

    Article  Google Scholar 

  37. Pham, V.-T., Khurana, S., Roy, S., Roychoudhury, A.: Bucketing failing tests via symbolic analysis. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 43–59. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_3

    Chapter  Google Scholar 

  38. Podelski, A., Schäf, M., Wies, T.: Classifying bugs with interpolants. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762, pp. 151–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41135-4_9

    Chapter  Google Scholar 

  39. Podgurski, A., et al.: Automated support for classifying software failure reports. In: ICSE, pp. 465–477. IEEE (2003)

    Google Scholar 

  40. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE, pp. 30–39. IEEE (2003)

    Google Scholar 

  41. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the effects of minimization on the fault detection capabilities of test suites. In: ICSM, pp. 34–43. IEEE (1998)

    Google Scholar 

  42. Schäuffele, J., Zurawka, T.: Automotive Software Engineering - Grundlagen, Prozesse, Methoden und Werkzeuge effizient einsetzen (6. Aufl.). Vieweg (2016)

    Google Scholar 

  43. Schneider, F.B., Bloom, B., Marzullo, K.: Putting time into proof outlines. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 618–639. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0032010

    Chapter  Google Scholar 

  44. Schwartz-Narbonne, D., Oh, C., Schäf, M., Wies, T.: VERMEER: a tool for tracing and explaining faulty C programs. In: ICSE, vol. 2, pp. 737–740. IEEE (2015)

    Google Scholar 

  45. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

    Article  Google Scholar 

  46. Wang, T., Roychoudhury, A.: Automated path generation for software fault localization. In: ASE, pp. 347–351. ACM (2005)

    Google Scholar 

  47. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

    Article  Google Scholar 

  48. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set minimization on fault detection effectiveness. Softw. Pract. Exp. 28(4), 347–369 (1998)

    Article  Google Scholar 

  49. Wong, W.E., Horgan, J.R., Mathur, A.P., Pasquini, A.: Test set size minimization and fault detection effectiveness: a case study in a space application. J. Syst. Softw. 48(2), 79–89 (1999)

    Article  Google Scholar 

  50. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Softw. Test. Verification Reliab. 22(2), 67–120 (2012)

    Article  Google Scholar 

  51. Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve effective and scalable prioritisation incorporating expert knowledge. In: ISSTA, pp. 201–212. ACM (2009)

    Google Scholar 

  52. Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT FSE, pp. 1–10. ACM (2002)

    Google Scholar 

  53. Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate switching. In: ICSE, pp. 272–281. ACM (2006)

    Google Scholar 

Download references

Acknowledgements

The results were obtained in the projects “Virtual Test Analyzer I – III”, conducted in collaboration with IAV GmbH. The last author is supported by a Junior Fellowship from the Simons Foundation (855328, SW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becker, M., Meyer, R., Runge, T., Schaefer, I., van der Wall, S., Wolff, S. (2022). Model-Based Fault Classification for Automotive Software. In: Sergey, I. (eds) Programming Languages and Systems. APLAS 2022. Lecture Notes in Computer Science, vol 13658. Springer, Cham. https://doi.org/10.1007/978-3-031-21037-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21037-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21036-5

  • Online ISBN: 978-3-031-21037-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics