Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robot Navigation Anticipative Strategies in Deep Reinforcement Motion Planning

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 590))

Included in the following conference series:

  • 775 Accesses

Abstract

The navigation of robots in dynamic urban environments, requires elaborated anticipative strategies for the robot to avoid collisions with dynamic objects, like bicycles or pedestrians, and to be human aware. We have developed and analyzed three anticipative strategies in motion planning taking into account the future motion of the mobile objects that can move up to 18 km/h. First, we have used our hybrid policy resulting from a Deep Deterministic Policy Gradient (DDPG) training and the Social Force Model (SFM), and we have tested it in simulation in four complex map scenarios with many pedestrians. Second, we have used these anticipative strategies in real-life experiments using the hybrid motion planning method and the ROS Navigation Stack with Dynamic Windows Approach (NS-DWA). The results in simulations and real-life experiments show very good results in open environments and also in mixed scenarios with narrow spaces.

O. Gil—Work supported under the Spanish State Research Agency through the Maria de Maeztu Seal of Excellence to IRI (MDM-2016-0656) and ROCOTRANSP project (PID2019-106702RB-C21/AEI/10.13039/501100011033). Óscar Gil is also supported by the Spanish Ministry of Science and Innovation under an FPI-grant, BES-2017-082126.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human-robot collaboration. Auton. Robot. 42(5), 957–975 (2018)

    Article  Google Scholar 

  2. Charalampous, K., Kostavelis, I., Gasteratos, A.: Recent trends in social aware robot navigation: A survey. Robot. Auton. Syst. 93, 85–104 (2017)

    Article  Google Scholar 

  3. Chiang, H.T., Malone, N., Lesser, K., Oishi, M., Tapia, L.: Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 2347–2354. IEEE (2015)

    Google Scholar 

  4. Chiang, H.T.L., Faust, A., Fiser, M., Francis, A.: Learning navigation behaviors end-to-end with autorl. IEEE Robot. Autom. Lett. 4(2), 2007–2014 (2019)

    Article  Google Scholar 

  5. Cosgun, A., Sisbot, E.A., Christensen, H.I.: Anticipatory robot path planning in human environments. In: 2016 25th IEEE international symposium on robot and human interactive communication (RO-MAN), pp. 562–569. IEEE (2016)

    Google Scholar 

  6. Dalmasso, M., Garrell, A., Domínguez, J.E., Jiménez, P., Sanfeliu, A.: Human-robot collaborative multi-agent path planning using monte carlo tree search and social reward sources. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 10133–10138 (2021)

    Google Scholar 

  7. Faust, A., Francis, A., Mehta, D.: Evolving rewards to automate reinforcement learning. arXiv preprint arXiv:1905.07628 (2019)

  8. Ferrer, G., Sanfeliu, A.: Anticipative kinodynamic planning: multi-objective robot navigation in urban and dynamic environments. Auton. Robot. 43(6), 1473–1488 (2019)

    Article  Google Scholar 

  9. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  10. Francis, A., et al.: Long-range indoor navigation with prm-rl. IEEE Trans. Robot. (2020)

    Google Scholar 

  11. Gil, O., Garrell, A., Sanfeliu, A.: Social robot navigation tasks: Combining machine learning techniques and social force model. Sensors 21(21), 7087 (2021)

    Article  Google Scholar 

  12. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870 (2018)

    Google Scholar 

  13. Han, Y., Zhan, I.H., Zhao, W., Pan, J., Zhang, Z., Wang, Y., Liu, Y.J.: Deep reinforcement learning for robot collision avoidance with self-state-attention and sensor fusion. IEEE Robot. Autom. Lett. 7(3), 6886–6893 (2022)

    Article  Google Scholar 

  14. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  15. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  16. Linder, T., Breuers, S., Leibe, B., Arras, K.O.: On multi-modal people tracking from mobile platforms in very crowded and dynamic environments. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5512–5519 (2016)

    Google Scholar 

  17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  18. Repiso, E., Garrell, A., Sanfeliu, A.: People’s adaptive side-by-side model evolved to accompany groups of people by social robots. IEEE Robot. Automat. Lett. 5(2), 2387–2394 (2020)

    Article  Google Scholar 

  19. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: A survey. Int. J. Robot. Res. 39(8), 895–935 (2020)

    Article  Google Scholar 

  20. Schöller, C., Aravantinos, V., Lay, F., Knoll, A.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot. Autom. Lett. 5(2), 1696–1703 (2020)

    Article  Google Scholar 

  21. Urdiales, C., et al.: A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation. Auton. Robot. 30(2), 179–197 (2011)

    Article  Google Scholar 

  22. Vaquero, V., Repiso, E., Sanfeliu, A.: Robust and real-time detection and tracking of moving objects with minimum 2d lidar information to advance autonomous cargo handling in ports. Sensors 19(1), 107 (2019)

    Article  Google Scholar 

  23. Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision prediction. EPL (Europhysics Lett.) 93(6), 68005 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gil, Ó., Sanfeliu, A. (2023). Robot Navigation Anticipative Strategies in Deep Reinforcement Motion Planning. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-031-21062-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21062-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21061-7

  • Online ISBN: 978-3-031-21062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics