Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

HM-LDM: A Hybrid-Membership Latent Distance Model

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

Abstract

A central aim of modeling complex networks is to accurately embed networks in order to detect structures and predict link and node properties. The Latent Space Model (LSM) has become a prominent framework for embedding networks and includes the Latent Distance Model (LDM) and Eigenmodel (LEM) as the most widely used LSM specifications. For latent community detection, the embedding space in LDMs has been endowed with a clustering model whereas LEMs have been constrained to part-based non-negative matrix factorization (NMF) inspired representations promoting community discovery. We presently reconcile LSMs with latent community detection by constraining the LDM representation to the D-simplex forming the Hybrid-Membership Latent Distance Model (HM-LDM). We show that for sufficiently large simplex volumes this can be achieved without loss of expressive power whereas by extending the model to squared Euclidean distances, we recover the LEM formulation with constraints promoting part-based representations akin to NMF. Importantly, by systematically reducing the volume of the simplex, the model becomes unique and ultimately leads to hard assignments of nodes to simplex corners. We demonstrate experimentally how the proposed HM-LDM admits accurate node representations in regimes ensuring identifiability and valid community extraction. Importantly, HM-LDM naturally reconciles soft and hard community detection with network embeddings exploring a simple continuous optimization procedure on a volume constrained simplex that admits the systematic investigation of trade-offs between hard and mixed membership community detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9(65), 1981–2014 (2008)

    MATH  Google Scholar 

  2. Ball, B., Karrer, B., Newman, M.E.J.: An efficient and principled method for detecting communities in networks. CoRR abs/1104.3590 (2011)

    Google Scholar 

  3. Bhowmick, A.K., Meneni, K., Danisch, M., Guillaume, J.L., Mitra, B.: LouvainNE: Hierarchical louvain method for high quality and scalable network embedding. In: WSDM, pp. 43–51 (2020)

    Google Scholar 

  4. Çelikkanat, A., Malliaros, F.D.: Exponential family graph embeddings. In: AAAI, pp. 3357–3364 (2020)

    Google Scholar 

  5. Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community analysis: a survey (2016)

    Google Scholar 

  6. Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)

    Google Scholar 

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

    Google Scholar 

  8. Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering for social networks. J. R. Stat. Soc. Ser. A Stat. Soc. 170(2), 301–354 (2007)

    Article  MathSciNet  Google Scholar 

  9. Hoff, P.D.: Bilinear mixed-effects models for dyadic data. JASA 100(469), 286–295 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoff, P.D.: Modeling homophily and stochastic equivalence in symmetric relational data (2007)

    Google Scholar 

  11. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. JASA 97(460), 1090–1098 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, K., Sidiropoulos, N.D., Swami, A.: Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Sign. Proc. 62(1), 211–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jianbo Shi, Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 22(8), 888–905 (2000)

    Google Scholar 

  14. Karrer, B., Newman, M.E.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  MathSciNet  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2017)

    Google Scholar 

  16. Krivitsky, P.N., Handcock, M.S., Raftery, A.E., Hoff, P.D.: Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Soc. Netw. 31(3), 204–213 (2009)

    Article  Google Scholar 

  17. Kuang, D., Ding, C., Park, H.: Symmetric nonnegative matrix factorization for graph clustering. In: SDM (2012)

    Google Scholar 

  18. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  MATH  Google Scholar 

  19. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014)

    Google Scholar 

  20. Mao, X., Sarkar, P., Chakrabarti, D.: On mixed memberships and symmetric nonnegative matrix factorizations. In: ICML, vol. 70 (2017)

    Google Scholar 

  21. Mucha, P., Porter, M.: Social structure of facebook networks. Phys. A Stat. Mech. Appl. 391, 4165-4180 (2012)

    Google Scholar 

  22. Nakis, N., Çelikkanat, A., Jørgensen, S.L., Mørup, M.: A hierarchical block distance model for ultra low-dimensional graph representations (2022)

    Google Scholar 

  23. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 849-856. NIPS’01, MIT Press, Cambridge, MA, USA (2001)

    Google Scholar 

  25. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: KDD, pp. 701-710 (2014)

    Google Scholar 

  26. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, C., Wang, K., Tang, J.: NetSMF: Large-scale network embedding as sparse matrix factorization. In: WWW (2019)

    Google Scholar 

  27. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and Node2Vec. In: WSDM, pp. 459–467 (2018)

    Google Scholar 

  28. Raftery, A.E., Niu, X., Hoff, P.D., Yeung, K.Y.: Fast inference for the latent space network model using a case-control approximate likelihood. J. Comput. Graph. Stat. 21(4), 901–919 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ryan, C., Wyse, J., Friel, N.: Bayesian model selection for the latent position cluster model for social networks. Netw. Sci. 5(1), 70–91 (2017)

    Article  Google Scholar 

  30. Sun, B.J., Shen, H., Gao, J., Ouyang, W., Cheng, X.: A non-negative symmetric encoder-decoder approach for community detection. In: CIKM (2017)

    Google Scholar 

  31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: Large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  32. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI (2017)

    Google Scholar 

  33. Wind, D.K., Mørup, M.: Link prediction in weighted networks. In: 2012 IEEE International Workshop MLSP, pp. 1–6 (2012)

    Google Scholar 

  34. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: WSDM (2013)

    Google Scholar 

  35. Yang, L., Gu, J., Wang, C., Cao, X., Zhai, L., Jin, D., Guo, Y.: Toward unsupervised graph neural network: interactive clustering and embedding via optimal transport. In: ICDM (2020)

    Google Scholar 

  36. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6(1) (2020)

    Google Scholar 

  37. Zhang, J., Dong, Y., Wang, Y., Tang, J., Ding, M.: Prone: fast and scalable network representation learning. In: IJCAI (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for the constructive feedback and their insightful comments. We would also like to thank Sune Lehmann, Louis Boucherie, Lasse Mohr Mikkelsen, and Giorgio Giannone for the useful and fruitful discussions. We gratefully acknowledge the Independent Research Fund Denmark for supporting this work [grant number: 0136-00315B].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Nakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakis, N., Çelikkanat, A., Mørup, M. (2023). HM-LDM: A Hybrid-Membership Latent Distance Model. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics