Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis on the Effects of Graph Perturbations on Centrality Metrics

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Abstract

Graph robustness upon node failures state-of-art is huge. However, not enough is known on the effects of centrality metrics ranking after graph perturbations. To fill this gap, our aim is to quantify how much small graph perturbations will affect the centrality metrics. Thus, we considered two type of probabilistic failure models (i.e., Uniform and Best Connected), a fraction \(\tau \) of nodes under attack, with \(0 < \tau \le 1\), and three popular centrality metrics (i.e., Degree, the Eigenvector and the Katz centrality). We discovered that in the Uniform model the amount of change in the adjacency matrix due to a perturbation is not significantly affected when \(\tau \) is small even with a quite high failure probability (i.e., \(p\le 85\%\)) and that the Eigenvector centrality is the most susceptible metric to deformation respect to the others herein analysed; whereas, in the Best Connected model, the amount of perturbation is proportional to \(\tau \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A walk of length k in a graph is a sequence \(\langle i_0, i_1,\ldots ,i_{k-1} \rangle \) of nodes such that pair of consecutive nodes in the sequence are connected by an edge.

References

  1. Newman, M.: Networks: An Introduction. Oxford University Press (2010)

    Google Scholar 

  2. Lü, L., Chen, D., Ren, X., Zhang, Q., Zhang, Y., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  Google Scholar 

  3. Kang, C., Kraus, S., Molinaro, C., Spezzano, F., Subrahmanian, V.: Diffusion centrality: a paradigm to maximize spread in social networks. Artif. Intell. 239, 70–96 (2016)

    Article  MATH  Google Scholar 

  4. Albert, R., Jeong, H., Barabási, A.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  5. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)

    Article  Google Scholar 

  6. Li, M., Liu, R., Lü, L., Hu, M., Xu, S., Zhang, Y.: Percolation on complex networks: theory and application. Phys. Rep. 907, 1–68 (2021)

    Article  MATH  Google Scholar 

  7. Moore, C., Newman, M.: Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 62(5), 7059 (2000)

    Article  Google Scholar 

  8. Cavallaro, L., Costantini, S., De Meo, P., Liotta, A., Stilo, G.: Network connectivity under a probabilistic node failure model. In: IEEE Transactions on Network Science and Engineering, pp. 1–1 (2022)

    Google Scholar 

  9. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MATH  Google Scholar 

  10. Costenbader, E., Valente, T.W.: The stability of centrality measures when networks are sampled. Soc. Netw. 25(4), 283–307 (2003)

    Article  Google Scholar 

  11. Borgatti, S.P., Carley, M.M., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Soc. Netw. 28(2), 124–136 (2006)

    Article  Google Scholar 

  12. Diesner, J., Evans, C.S., Kim, J.: Impact of entity disambiguation errors on social network properties. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  13. Mishra, S., Fegley, B.D., Diesner, J., Torvik, V.I.: Self-citation is the hallmark of productive authors, of any gender. PloS One 13(9), e0195773 (2018)

    Article  Google Scholar 

  14. Cvetković, D., Rowlinson, P., Simic, S.: Eigenspaces of Graphs, vol. 66. Cambridge University Press (1997)

    Google Scholar 

  15. Strang, G.: Introduction to Linear Algebra, vol. 3. Cambridge Press Wellesley, Wellesley, MA (1993)

    MATH  Google Scholar 

  16. Langville, A., Meyer, C.: Google’s PageRank and Beyond. Princeton university press (2011)

    Google Scholar 

  17. Benzi, M., Klymko, C.: On the limiting behavior of parameter-dependent network centrality measures. SIAM J. Matrix Anal. Appl. 36(2), 686–706 (2015)

    Article  MATH  Google Scholar 

  18. Franklin, J.: Matrix Theory. Courier Corporation (2012)

    Google Scholar 

  19. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. 9(2):cnab014 (2021)

    Google Scholar 

  20. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Disc. Data (TKDD) 1(1):2–es (2007)

    Google Scholar 

  21. Grando, F., Zambenedetti Granville, L., Lamb, L.C.: Machine learning in network centrality measures: tutorial and outlook. ACM Comput. Surv. 51(5):102:1–102:32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Cavallaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavallaro, L. et al. (2023). Analysis on the Effects of Graph Perturbations on Centrality Metrics. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics