Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Search for Zinc Complexes with High Affinity in Pyrazinamidase from Mycobacterium Tuberculosis Resistant to Pyrazinamide

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2022)

Abstract

Tuberculosis is an ancient and current disease. Resistance to the prodrug pyrazinamide (PZA), one of the most important antituberculosis drug, is often associated with various mutations in the pncA gene that expresses the metalloenzyme pyrazinamidase (PZase). Some hard and intermediate acids, such as Co(II), Mn(II), and Zn(II), showed the ability to partially recover the susceptibility to PZA in resistant strains. In this work, we investigate the affinity that zinc complexes can achieve in the PZase protein with a low affinity for pyrazinamide. First, we select the PZase mutant with the best resistance profile to PZA using the web-server SUSPECT-PZA and a home-made script. Then we use the tmQM database, which contains 86,665 metal complexes with crystallographic structures and quantum descriptors, to search for zinc complexes with high affinity for PZase. Out of 5867 Zn complexes, 100 with lower dipole moment, higher hardness and lower HOMO energy were selected. Molecular docking studies using (a) empirical scoring functions (SF) and (b) SF based on machine learning, allowed us to find complexes such as BUXZUQ, FEQTUS or DOSQUA that have higher affinity for PZase than PZA. These Zn complexes not only exhibit higher global reactivity compared to PZA, but are also very similar to each other, and to a lesser degree their organic part is also similar to that of PZA. The compounds we have reported can serve as a basis for the design of new antituberculosis metallodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adeniyi, A.A., Ajibade, P.A.: Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of RU (II)-based complexes as anticancer agents. Molecules 18(4), 3760–3778 (2013)

    Article  CAS  Google Scholar 

  2. Ain, Q.U., et al.: Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(6), 405–424 (2015)

    Article  CAS  Google Scholar 

  3. Arce, O.E.A.: Função de escore baseada em machine learning para docagem molecular proteína-ligante. Master’s thesis (2020)

    Google Scholar 

  4. Balcells, D., Skjelstad, B.B.: tmQM dataset-quantum geometries and properties of 86k transition metal complexes. J. Chem. Inf. Model. 60(12), 6135–6146 (2020)

    Article  CAS  Google Scholar 

  5. Bannwarth, C., et al.: GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15(3), 1652–1671 (2019)

    Article  CAS  Google Scholar 

  6. Chávez Llallire, N.K., et al.: Síntesis, caracterización y evaluación de la actividad biológica de compuestos de coordinación de cobalto con pirazinamida. Rev. Soc. Quim. Peru 86(3), 315–328 (2020)

    Google Scholar 

  7. Coelho, T., et al.: Metal-based antimicrobial strategies against intramacrophage mycobacterium tuberculosis. Lett. Appl. Microbiol. 71(2), 146–153 (2020)

    Article  CAS  Google Scholar 

  8. Du, X., et al.: Crystal structure and mechanism of catalysis of a Pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40(47), 14166–14172 (2001)

    Article  CAS  Google Scholar 

  9. Friesner, R.A., et al.: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein- ligand complexes. J. Med. Chem. 49(21), 6177–6196 (2006)

    Article  CAS  Google Scholar 

  10. Fyfe, P.K., et al.: Specificity and mechanism of Acinetobacter baumanii nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. Angew. Chem. Int. Ed. 48(48), 9176–9179 (2009)

    Article  CAS  Google Scholar 

  11. Jeremiah, C., et al.: The who global tuberculosis 2021 report - not so good news and turning the tide back to end TB. Int. J. Infect. Dis. (2022)

    Google Scholar 

  12. Karmakar, M., et al.: Structure guided prediction of pyrazinamide resistance mutations in pncA. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  13. Khadem-Maaref, M., et al.: Effects of metal-ion replacement on pyrazinamidase activity: a quantum mechanical study. J. Mol. Graph. Model. 73, 24–29 (2017)

    Article  CAS  Google Scholar 

  14. Kundu, I., et al.: A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties. RSC Adv. 8(22), 12127–12137 (2018)

    Article  CAS  Google Scholar 

  15. Lesnik, S., et al.: LiSiCA: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase inhibitors. J. Chem. Inf. Model. 55(8), 1521–1528 (2015)

    Article  CAS  Google Scholar 

  16. Liu, J., Wang, R.: Classification of current scoring functions. J. Chem. Inf. Model. 55(3), 475–482 (2015)

    Article  CAS  Google Scholar 

  17. Maldonado, Y.D., et al.: Evaluation of their potential as prospective agents against mycobacterium tuberculosis. J. Inorg. Biochem. 227, 111683 (2022)

    Article  CAS  Google Scholar 

  18. Medina-Franco, J.L., et al.: Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Discov. 27(5), 1420–1430 (2022)

    CAS  Google Scholar 

  19. Njire, M., et al.: Pyrazinamide resistance in mycobacterium tuberculosis: review and update. Adv. Med. Sci. 61(1), 63–71 (2016)

    Article  Google Scholar 

  20. Petrella, S., et al.: Crystal structure of the Pyrazinamidase of mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS One 6(1), e15785 (2011)

    Article  CAS  Google Scholar 

  21. Prasad, H.N., et al.: Design, synthesis and molecular docking studies of novel piperazine metal complexes as potential antibacterial candidate against MRSA. J. Mol. Struct. 1232, 130047 (2021)

    Google Scholar 

  22. Quaresma, S., Alves, P.C., Rijo, P., Duarte, M.T., André, V.: Antimicrobial activity of pyrazinamide coordination frameworks synthesized by mechanochemistry. Molecules 26(7), 1904 (2021)

    Article  CAS  Google Scholar 

  23. Rasool, N., Husssain, W., Khan, Y.D.: Revelation of enzyme activity of mutant Pyrazinamidases from mycobacterium tuberculosis upon binding with various metals using quantum mechanical approach. Comput. Biol. Chem. 83, 107108 (2019)

    Google Scholar 

  24. Rasool, N., Iftikhar, S., Amir, A., Hussain, W.: Structural and quantum mechanical computations to elucidate the altered binding mechanism of metal and drug with Pyrazinamidase from mycobacterium tuberculosis due to mutagenicity. J. Mol. Graph. 80, 126–131 (2018)

    Article  CAS  Google Scholar 

  25. Salazar-Salinas, K., et al.: Metal-ion effects on the polarization of metal-bound water and infrared vibrational modes of the coordinated metal center of mycobacterium tuberculosis Pyrazinamidase via quantum mechanical calculations. J. Phys. Chem. B 118(34), 10065–10075 (2014)

    Article  CAS  Google Scholar 

  26. Sheen, P., et al.: Role of metal ions on the activity of mycobacterium tuberculosis Pyrazinamidase. Am. J. Trop. Med. Hyg. 87(1), 153 (2012)

    Article  CAS  Google Scholar 

  27. Sheen, P., et al.: Metallochaperones are needed for mycobacterium tuberculosis and Escherichia coli Nicotinamidase-Pyrazinamidase activity. J. Bacteriol. 202(2), e00331–19 (2020)

    Google Scholar 

  28. Shen, C., et al.: From machine learning to deep learning: advances in scoring functions for protein-ligand docking. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10(1), e1429 (2020)

    Article  CAS  Google Scholar 

  29. Singh, R., et al.: Recent updates on drug resistance in mycobacterium tuberculosis. J. Appl. Microbiol. 128(6), 1547–1567 (2020)

    Article  CAS  Google Scholar 

  30. Smith, Q.A., Ruedenberg, K., Gordon, M.S., Slipchenko, L.V.: The dispersion interaction between quantum mechanics and effective fragment potential molecules. J. Chem. Phys. 136(24), 244107 (2012)

    Article  Google Scholar 

  31. Su, M., et al.: Comparative assessment of scoring functions: the CASF-2016 update. J. Chem. Inf. Model. 59(2), 895–913 (2018)

    Article  Google Scholar 

  32. Sun, Q., et al.: The molecular basis of pyrazinamide activity on mycobacterium tuberculosis panD. Nat. Commun. 11(1), 1–7 (2020)

    Google Scholar 

  33. Vijayakrishnan, P., Antony, S.A., Velmurugan, D.: Structural data of DNA binding and molecular docking studies of dihydropyrimidinone transition metal complexes. Data Br. 19, 817–825 (2018)

    Article  CAS  Google Scholar 

  34. Zhang, Y., et al.: Mechanisms of pyrazinamide action and resistance. Microbiol. Spectr. 2(4), 2–4 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The team thanks Dr. Ataualpa Carmo Braga, from the Institute of Chemistry of the University of Sao Paulo, for the support in the use of Gaussian09. JAAH thanks the financial support of the Management Agreement No. 237-2015-FONDECYT to the Vice-Rectorate for Research of the Universidad Nacional de Ingeniería of Peru. KSM, AVW, OEAA and MDCB thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [process number 439582/2018-0], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [Finance Code 001] and Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS) [process number 22/2551-0000385-0].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina dos Santos Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarado-Huayhuaz, J.A. et al. (2022). Search for Zinc Complexes with High Affinity in Pyrazinamidase from Mycobacterium Tuberculosis Resistant to Pyrazinamide. In: Scherer, N.M., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science(), vol 13523. Springer, Cham. https://doi.org/10.1007/978-3-031-21175-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21175-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21174-4

  • Online ISBN: 978-3-031-21175-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics