Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tractometric Coherence of Fiber Bundles in DTI

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13722))

Included in the following conference series:

  • 340 Accesses

Abstract

Based on a diffusion tensor image (DTI) and a tentative tractogram of a fiber bundle we propose a filtering method for operationally defining and removing outliers using tractometry. To this end we assign to each track a set of K invariants, i.e. scalars invariant under rigid transformations. The cluster of K-tuples of all tracks in a bundle may be pruned using outlier detection  methods in \(\mathbb {R}^K\), after which backprojection of the remaining K-tuples produces a filtered tractogram with enhanced coherence. This intrinsic pruning method is blind to the relative spatial organization of tracks in a bundle. We consider two types of invariants, one capturing local diffusion properties and one representing differential properties averaged along tracks. Our experiments indicate that our tractometric filtering is complementary to extrinsic methods based on the relative spatial configuration of tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Super-/subscripts denote contra-/covariant indices, to which Einstein summation convention applies, i.e. each pair of identical sub- and superscript implies a summation over the corresponding ‘dummy’ index.

References

  1. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol. 2000. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1268-3

    Book  MATH  Google Scholar 

  2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  3. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Series B 111(3), 209–219 (1996)

    Article  Google Scholar 

  4. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  5. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104. SIGMOD 2000, Association for Computing Machinery, New York, NY, USA (2000)

    Google Scholar 

  6. Chamberland, M., et al.: Tractometry-based anomaly detection for single-subject white matter analysis (2020)

    Google Scholar 

  7. Chamberland, M., et al.: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. Neuroimage 200, 89–100 (2019)

    Article  Google Scholar 

  8. Coley, A.A., MacDougall, A., McNutt, D.D.: Basis for scalar curvature invariants in three dimensions. Class. Quantum Gravity 31(23), 235010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coley, A., Hervik, S., Pelavas, N.: Spacetimes characterized by their scalar curvature invariants. Class. Quantum Gravity 26(2), 025013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daducci, A., Dal Palù, A., Lemkaddem, A., Thiran, J.P.: Commit: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)

    Article  Google Scholar 

  11. Fuster, A., Dela Haije, T., Tristán-Vega, A., Plantinga, B., Westin, C.F., Florack, L.: Adjugate diffusion tensors for geodesic tractography in white matter. J. Math. Imaging Vis. 54(1), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinf. 8 (2014)

    Google Scholar 

  13. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: QuickBundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  14. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)

    Article  Google Scholar 

  15. Hao, X., Whitaker, R.T., Fletcher, P.T.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_2

    Chapter  Google Scholar 

  16. Hao, X., Zygmunt, K., Whitaker, R.T., Fletcher, P.T.: Improved segmentation of white matter tracts with adaptive Riemannian metrics. Med. Image Anal. 18, 161–175 (2014)

    Article  Google Scholar 

  17. Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, 6th edn. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-21298-7

    Book  MATH  Google Scholar 

  18. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. 8(3), 237–253 (2000)

    Article  Google Scholar 

  19. Legarreta, J.H., et al.: Filtering in tractography using autoencoders (FINTA). Med. Image Anal. 72, 102126 (2021)

    Article  Google Scholar 

  20. Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: application to connectivity mapping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 127–140. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_11

    Chapter  Google Scholar 

  21. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008)

    Google Scholar 

  22. Meesters, S., et al.: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery. J. Neurosci. Methods 288, 34–44 (2017)

    Article  Google Scholar 

  23. Meesters, S., Rutten, G.J., Fuster, A., Florack, L.: Automated tractography of four white matter fascicles in support of brain tumor surgery. In: 2019 OHBM Annual Meeting, June 6–13 2019, Rome, Italy. Organization for Human Brain Mapping (2019), abstract nr. Th768

    Google Scholar 

  24. Mirzaalian, H., et al.: Harmonizing diffusion MRI data across multiple sites and scanners. In: Medical image computing and computer-assisted intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 9349, 12–19 October (2015)

    Google Scholar 

  25. O’Donnell, L., Haker, S., Westin, C.-F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45786-0_57

    Chapter  MATH  Google Scholar 

  26. O’Donnell, L., Westin, C.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26, 1562–75 (2007)

    Article  Google Scholar 

  27. Rund, H.: The Differential Geometry of Finsler Spaces. Springer, Berlin (1959). https://doi.org/10.1007/978-3-642-51610-8

    Book  MATH  Google Scholar 

  28. Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path tractography in DTI Using Gaussian process ODE solvers. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 265–272. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_34

    Chapter  Google Scholar 

  29. Sebastiani, G., De Pasquale, F., Barone, P.: Quantifying human brain connectivity from diffusion tensor MRI. J. Math. Imaging is. 25(2), 227–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sengers, R., Florack, L., Fuster, A.: Geodesic uncertainty in diffusion MRI. Front. Comput. Sci. 3, 718131 (2021)

    Article  Google Scholar 

  31. Sengers, R., Florack, L., Fuster, A.: Geodesic tubes for uncertainty quantification in diffusion MRI. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 279–290. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_22

    Chapter  Google Scholar 

  32. Shen, Y.B., Shen, Z.: Introduction to Modern Finsler Geometry. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  33. Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A.: Sift2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015)

    Article  Google Scholar 

  34. Spivak, M.: Differential Geometry, vol. 1–5. Publish or Perish, Berkeley (1975)

    Google Scholar 

  35. St-Jean, S., Chamberland, M., Viergever, M.A., Leemans, A.: Reducing variability in along-tract analysis with diffusion profile realignment. Neuroimage 199, 663–679 (2019)

    Article  Google Scholar 

  36. Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.H., Connelly, A.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  37. Westin, C.-F., Maier, S.E., Khidhir, B., Everett, P., Jolesz, F.A., Kikinis, R.: Image processing for diffusion tensor magnetic resonance imaging. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 441–452. Springer, Heidelberg (1999). https://doi.org/10.1007/10704282_48

    Chapter  Google Scholar 

  38. Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., Feldman, H.M.: Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE 7(11), e49790 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme “Diffusion MRI Tractography with Uncertainty Propagation for the Neurosurgical Workflow” with project number 16338, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). This work was supported by a research grant (00028384) from VILLUM FONDEN. We would like to thank neurosurgeon Geert-Jan Rutten for sharing the clinical dataset used in our experiments at the Elisabeth TweeSteden Hospital (ETZ) in Tilburg, The Netherlands, and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Sengers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sengers, R., Dela Haije, T., Fuster, A., Florack, L. (2022). Tractometric Coherence of Fiber Bundles in DTI. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics