Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Methodology for DSML-Assisted Participatory Agent-Based Enterprise Modelling

  • Conference paper
  • First Online:
The Practice of Enterprise Modeling (PoEM 2022)

Abstract

Participatory agent-based modelling (ABM) can help bring the benefits of simulation to domain users by actively involving stakeholders in the development process. Collaboration in enterprise modelling can improve the model developer’s understanding of the domain and therefore improve the effectiveness of domain analysis. Where many agent-oriented methodologies focus on the development of one-off models, domain-specific modelling languages (DSML) can improve the re-use of concepts identified in domain analysis across multiple case studies and expose modelling concepts in domain-appropriate terms, increasing model accessibility. To realise the benefits of DSMLs we need to understand how DSML development can be incorporated into typical agent-based modelling. In this paper we discuss existing methodologies for ABM development and DSML development, and we discuss the benefits merging the two can bring. We present a methodology for DSML-assisted participatory agent-based modelling, and support the methodology with a case study—a modelling exercise conducted in collaboration with a hospital emergency department on the topic of infection control for COVID-19 and Influenza.

T. Godfrey—Supported by the KCL funded Centre for Doctoral Training (CDT) in Data-Driven Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaca, O.F., Tezel, B.T., Challenger, M., Goulão, M., Amaral, V., Kardas, G.: AgentDSM-Eval: a framework for the evaluation of domain-specific modeling languages for multi-agent systems. Comput. Stand. Interfaces 76, 103513 (2021). https://doi.org/10.1016/j.csi.2021.103513. https://www.sciencedirect.com/science/article/pii/S0920548921000088

  2. Barat, S., Kulkarni, V., Clark, T., Barn, B.: An actor based simulation driven digital twin for analyzing complex business systems. In: 2019 Winter Simulation Conference (WSC), pp. 157–168 (2019). https://doi.org/10.1109/WSC40007.2019.9004694

  3. Barišić, A., Amaral, V., Goulao, M., Barroca, B.: Quality in use of domain-specific languages: a case study. In: Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages and Tools, pp. 65–72 (2011)

    Google Scholar 

  4. Blackall, D., Moreno, R., Jin, J., Plotinsky, R., Dworkin, R., Oethinger, M.: Performance characteristics of the roche diagnostics cobas Liat PCR system as a COVID-19 screening tool for hospital admissions in a regional health care delivery system. J. Clin. Microbiol. 59(10), e01278-21 (2021)

    Google Scholar 

  5. Bork, D., Sinz, E.J.: Bridging the gap from a multi-view modelling method to the design of a multi-view modelling tool. Enterp. Model. Inf. Syst. Archit. (EMISAJ) 8(2), 25–41 (2013)

    Article  Google Scholar 

  6. Clark, T., Kulkarni, V., Barat, S., Barn, B.: ESL: an actor-based platform for developing emergent behaviour organisation simulations. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 311–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59930-4_27

    Chapter  Google Scholar 

  7. Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modelling. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 85–105. Springer, Dordrecht (2012). https://doi.org/10.1007/978-90-481-8927-4_5

    Chapter  Google Scholar 

  8. Fakhimi, M., Anagnostou, A., Stergioulas, L., Taylor, S.J.E.: A hybrid agent-based and discrete event simulation approach for sustainable strategic planning and simulation analytics. In: Proceedings of the Winter Simulation Conference 2014, pp. 1573–1584 (2014). https://doi.org/10.1109/WSC.2014.7020009

  9. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional (2010)

    Google Scholar 

  10. García, A.P., Rodríguez-Patón, A.: Analyzing repast symphony models in R with RRepast package. bioRxiv, p. 047985 (2016)

    Google Scholar 

  11. Garro, A., Russo, W.: EasyABMS: a domain-expert oriented methodology for agent-based modeling and simulation. Simul. Model. Pract. Theory 18(10), 1453–1467 (2010)

    Article  Google Scholar 

  12. Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for developing agent-based social simulations. J. Artif. Soc. Soc. Simul. 16(2), 9 (2013)

    Article  Google Scholar 

  13. Heldal, R., Pelliccione, P., Eliasson, U., Lantz, J., Derehag, J., Whittle, J.: Descriptive vs prescriptive models in industry. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, MODELS 2016, pp. 216–226. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976767.2976808

  14. Iba, T., Matsuzawa, Y., Aoyama, N.: From conceptual models to simulation models: model driven development of agent-based simulations. In: 9th Workshop on Economics and Heterogeneous Interacting Agents, vol. 28, p. 149. Citeseer (2004)

    Google Scholar 

  15. Katsaliaki, K., Mustafee, N.: Applications of simulation within the healthcare context. J. Oper. Res. Soc. 62(8), 1431–1451 (2011)

    Article  Google Scholar 

  16. Klügl, F.: A validation methodology for agent-based simulations. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 39–43 (2008)

    Google Scholar 

  17. Lee, J.S., et al.: The complexities of agent-based modeling output analysis. J. Artif. Soc. Soc. Simul. 18(4) (2015)

    Google Scholar 

  18. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

    Article  Google Scholar 

  19. Merrick, B., et al.: Real-world deployment of lateral flow SARS-CoV-2 antigen detection in the emergency department to provide rapid, accurate and safe diagnosis of COVID-19. Infect. Prev. Pract. 3(4), 100186 (2021). https://doi.org/10.1016/J.INFPIP.2021.100186. https://linkinghub.elsevier.com/retrieve/pii/S2590088921000755

  20. Moody, D.: The “physics’’ of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

    Article  Google Scholar 

  21. Ozik, J., Collier, N.T., Murphy, J.T., North, M.J.: The ReLogo agent-based modeling language. In: 2013 Winter Simulations Conference (WSC), pp. 1560–1568. IEEE (2013)

    Google Scholar 

  22. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools. In: Agent-Oriented Methodologies, pp. 236–276. IGI Global (2005)

    Google Scholar 

  23. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering, vol. 10. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28901-1

    Book  MATH  Google Scholar 

  24. Ramanath, A.M., Gilbert, N.: The design of participatory agent-based social simulations. J. Artif. Soc. Soc. Simul. 7(4) (2004)

    Google Scholar 

  25. Sandkuhl, K., et al.: Enterprise modelling for the masses – from elitist discipline to common practice. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 225–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_16

    Chapter  Google Scholar 

  26. Santos, F., Nunes, I., Bazzan, A.L.: Model-driven agent-based simulation development: a modeling language and empirical evaluation in the adaptive traffic signal control domain. Simul. Model. Pract. Theory 83, 162–187 (2018)

    Article  Google Scholar 

  27. Stepney, S., Polack, F.: Engineering Simulations as Scientific Instruments: A Pattern Language: With Kieran Alden, Paul S. Andrews, James L. Bown, Alastair Droop, Richard B. Greaves, Mark Read, Adam T. Sampson, Jon Timmis, Alan F.T. Winfield. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01938-9

  28. Voinov, A., Bousquet, F.: Modelling with stakeholders. Environ. Model. Softw. 25(11), 1268–1281 (2010). https://doi.org/10.1016/j.envsoft.2010.03.007. https://www.sciencedirect.com/science/article/pii/S1364815210000538. Thematic Issue - Modelling with Stakeholders

  29. Völter, M., et al.: DSL Engineering - Designing, Implementing and Using Domain-Specific Languages. dslbook.org (2013). http://www.dslbook.org

  30. Zschaler, S., Polack, F.A.C.: A family of languages for trustworthy agent-based simulation. In: Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2020, pp. 16–21. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3426425.3426929

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Godfrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Godfrey, T., Batra, R., Douthwaite, S., Edgeworth, J., Miles, S., Zschaler, S. (2022). A Methodology for DSML-Assisted Participatory Agent-Based Enterprise Modelling. In: Barn, B.S., Sandkuhl, K. (eds) The Practice of Enterprise Modeling. PoEM 2022. Lecture Notes in Business Information Processing, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-031-21488-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21488-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21487-5

  • Online ISBN: 978-3-031-21488-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics