Abstract
Participatory agent-based modelling (ABM) can help bring the benefits of simulation to domain users by actively involving stakeholders in the development process. Collaboration in enterprise modelling can improve the model developer’s understanding of the domain and therefore improve the effectiveness of domain analysis. Where many agent-oriented methodologies focus on the development of one-off models, domain-specific modelling languages (DSML) can improve the re-use of concepts identified in domain analysis across multiple case studies and expose modelling concepts in domain-appropriate terms, increasing model accessibility. To realise the benefits of DSMLs we need to understand how DSML development can be incorporated into typical agent-based modelling. In this paper we discuss existing methodologies for ABM development and DSML development, and we discuss the benefits merging the two can bring. We present a methodology for DSML-assisted participatory agent-based modelling, and support the methodology with a case study—a modelling exercise conducted in collaboration with a hospital emergency department on the topic of infection control for COVID-19 and Influenza.
T. Godfrey—Supported by the KCL funded Centre for Doctoral Training (CDT) in Data-Driven Health.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alaca, O.F., Tezel, B.T., Challenger, M., Goulão, M., Amaral, V., Kardas, G.: AgentDSM-Eval: a framework for the evaluation of domain-specific modeling languages for multi-agent systems. Comput. Stand. Interfaces 76, 103513 (2021). https://doi.org/10.1016/j.csi.2021.103513. https://www.sciencedirect.com/science/article/pii/S0920548921000088
Barat, S., Kulkarni, V., Clark, T., Barn, B.: An actor based simulation driven digital twin for analyzing complex business systems. In: 2019 Winter Simulation Conference (WSC), pp. 157–168 (2019). https://doi.org/10.1109/WSC40007.2019.9004694
Barišić, A., Amaral, V., Goulao, M., Barroca, B.: Quality in use of domain-specific languages: a case study. In: Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages and Tools, pp. 65–72 (2011)
Blackall, D., Moreno, R., Jin, J., Plotinsky, R., Dworkin, R., Oethinger, M.: Performance characteristics of the roche diagnostics cobas Liat PCR system as a COVID-19 screening tool for hospital admissions in a regional health care delivery system. J. Clin. Microbiol. 59(10), e01278-21 (2021)
Bork, D., Sinz, E.J.: Bridging the gap from a multi-view modelling method to the design of a multi-view modelling tool. Enterp. Model. Inf. Syst. Archit. (EMISAJ) 8(2), 25–41 (2013)
Clark, T., Kulkarni, V., Barat, S., Barn, B.: ESL: an actor-based platform for developing emergent behaviour organisation simulations. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 311–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59930-4_27
Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modelling. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds.) Agent-Based Models of Geographical Systems, pp. 85–105. Springer, Dordrecht (2012). https://doi.org/10.1007/978-90-481-8927-4_5
Fakhimi, M., Anagnostou, A., Stergioulas, L., Taylor, S.J.E.: A hybrid agent-based and discrete event simulation approach for sustainable strategic planning and simulation analytics. In: Proceedings of the Winter Simulation Conference 2014, pp. 1573–1584 (2014). https://doi.org/10.1109/WSC.2014.7020009
Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional (2010)
García, A.P., Rodríguez-Patón, A.: Analyzing repast symphony models in R with RRepast package. bioRxiv, p. 047985 (2016)
Garro, A., Russo, W.: EasyABMS: a domain-expert oriented methodology for agent-based modeling and simulation. Simul. Model. Pract. Theory 18(10), 1453–1467 (2010)
Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for developing agent-based social simulations. J. Artif. Soc. Soc. Simul. 16(2), 9 (2013)
Heldal, R., Pelliccione, P., Eliasson, U., Lantz, J., Derehag, J., Whittle, J.: Descriptive vs prescriptive models in industry. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, MODELS 2016, pp. 216–226. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976767.2976808
Iba, T., Matsuzawa, Y., Aoyama, N.: From conceptual models to simulation models: model driven development of agent-based simulations. In: 9th Workshop on Economics and Heterogeneous Interacting Agents, vol. 28, p. 149. Citeseer (2004)
Katsaliaki, K., Mustafee, N.: Applications of simulation within the healthcare context. J. Oper. Res. Soc. 62(8), 1431–1451 (2011)
Klügl, F.: A validation methodology for agent-based simulations. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 39–43 (2008)
Lee, J.S., et al.: The complexities of agent-based modeling output analysis. J. Artif. Soc. Soc. Simul. 18(4) (2015)
Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)
Merrick, B., et al.: Real-world deployment of lateral flow SARS-CoV-2 antigen detection in the emergency department to provide rapid, accurate and safe diagnosis of COVID-19. Infect. Prev. Pract. 3(4), 100186 (2021). https://doi.org/10.1016/J.INFPIP.2021.100186. https://linkinghub.elsevier.com/retrieve/pii/S2590088921000755
Moody, D.: The “physics’’ of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)
Ozik, J., Collier, N.T., Murphy, J.T., North, M.J.: The ReLogo agent-based modeling language. In: 2013 Winter Simulations Conference (WSC), pp. 1560–1568. IEEE (2013)
Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools. In: Agent-Oriented Methodologies, pp. 236–276. IGI Global (2005)
Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering, vol. 10. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28901-1
Ramanath, A.M., Gilbert, N.: The design of participatory agent-based social simulations. J. Artif. Soc. Soc. Simul. 7(4) (2004)
Sandkuhl, K., et al.: Enterprise modelling for the masses – from elitist discipline to common practice. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 225–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_16
Santos, F., Nunes, I., Bazzan, A.L.: Model-driven agent-based simulation development: a modeling language and empirical evaluation in the adaptive traffic signal control domain. Simul. Model. Pract. Theory 83, 162–187 (2018)
Stepney, S., Polack, F.: Engineering Simulations as Scientific Instruments: A Pattern Language: With Kieran Alden, Paul S. Andrews, James L. Bown, Alastair Droop, Richard B. Greaves, Mark Read, Adam T. Sampson, Jon Timmis, Alan F.T. Winfield. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01938-9
Voinov, A., Bousquet, F.: Modelling with stakeholders. Environ. Model. Softw. 25(11), 1268–1281 (2010). https://doi.org/10.1016/j.envsoft.2010.03.007. https://www.sciencedirect.com/science/article/pii/S1364815210000538. Thematic Issue - Modelling with Stakeholders
Völter, M., et al.: DSL Engineering - Designing, Implementing and Using Domain-Specific Languages. dslbook.org (2013). http://www.dslbook.org
Zschaler, S., Polack, F.A.C.: A family of languages for trustworthy agent-based simulation. In: Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2020, pp. 16–21. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3426425.3426929
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Godfrey, T., Batra, R., Douthwaite, S., Edgeworth, J., Miles, S., Zschaler, S. (2022). A Methodology for DSML-Assisted Participatory Agent-Based Enterprise Modelling. In: Barn, B.S., Sandkuhl, K. (eds) The Practice of Enterprise Modeling. PoEM 2022. Lecture Notes in Business Information Processing, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-031-21488-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-21488-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21487-5
Online ISBN: 978-3-031-21488-2
eBook Packages: Computer ScienceComputer Science (R0)