Abstract
In this article, we propose an aggregation of denoising diffusion probabilistic models (DDPMs) onto an end-to-end text-to-speech system to learn a distribution of reference speaking styles in an unsupervised manner. By applying a few steps of a forward noising process to an embedding extracted from a reference mel spectrogram, we make profit of its information to reduce the diffusion chain and reconstruct an improved style embedding with only a few reverse steps, performing style transfer. Additionally, a proposed combination of spectrogram reconstruction and denoising losses allows for conditioning of the acoustic model on the synthesized style embeddings. A subjective perceptual evaluation is conducted to evaluate naturalness and style transfer capability of the proposed approach. The results show a 5-point increment on the mean of naturalness ratings and a preference of the raters (43%) of our proposed approach over state-of-the-art models (29%) in the style transfer scenario.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Our code is available at https://github.com/AI-Unicamp/TTS.
- 3.
Listening samples are available in https://ai-unicamp.github.io/publications/tts/diffusion_for_style/.
References
Aggarwal, V., Cotescu, M., Prateek, N., Lorenzo-Trueba, J., Barra-Chicote, R.: Using VAEs and normalizing flows for one-shot text-to-speech synthesis of expressive speech. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6179–6183 (2020). https://doi.org/10.1109/ICASSP40776.2020.9053678
Aylett, M.P., Clark, L., Cowan, B.R., Torre, I.: Building and designing expressive speech synthesis. In: The Handbook on Socially Interactive Agents: 20 years of Research on Embodied Conversational Agents, Intelligent Virtual Agents, and Social Robotics Volume 1: Methods, Behavior, Cognition, pp. 173–212. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3477322
Chen, N., Zhang, Y., Zen, H., Weiss, R.J., Norouzi, M., Chan, W.: WAVEGRAD: estimating gradients for waveform generation (2020). https://doi.org/10.48550/ARXIV.2009.00713
Chen, Z., et al.: InferGrad: improving diffusion models for vocoder by considering inference in training (2022). https://doi.org/10.48550/ARXIV.2202.03751
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124 (1971). https://doi.org/10.1037/h0030377
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
Hodari, Z., Lai, C., King, S.: Perception of prosodic variation for speech synthesis using an unsupervised discrete representation of f0. In: Proceedings of Speech Prosody 2020, pp. 965–969 (2020). https://doi.org/10.21437/SpeechProsody.2020-197. Published 24 May 2020; Speech Prosody 2020; Conference date: 24-05-2020 Through 28-05-2020
Im, C.B., Lee, S.H., Kim, S.B., Lee, S.W.: EMOQ-TTS: emotion intensity quantization for fine-grained controllable emotional text-to-speech. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6317–6321 (2022). https://doi.org/10.1109/ICASSP43922.2022.9747098
James, J., Balamurali, B.T., Watson, C.I., MacDonald, B.: Empathetic speech synthesis and testing for healthcare robots. Int. J. Soc. Robot. 13(8), 2119–2137 (2020). https://doi.org/10.1007/s12369-020-00691-4
Jeong, M., Kim, H., Cheon, S.J., Choi, B.J., Kim, N.S.: DIFF-TTS: a denoising diffusion model for text-to-speech (2021). https://doi.org/10.48550/ARXIV.2104.01409
Klimkov, V., Ronanki, S., Rohnke, J., Drugman, T.: Fine-grained robust prosody transfer for single-speaker neural text-to-speech. In: 2019 Proceedings of the Interspeech, pp. 4440–4444 (2019). https://doi.org/10.21437/Interspeech.2019-2571
Kong, Z., Ping, W.: On fast sampling of diffusion probabilistic models. In: ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2021). https://openreview.net/forum?id=agj4cdOfrAP
Kong, Z., Ping, W., Huang, J., Zhao, K., Catanzaro, B.: DiffWave: a versatile diffusion model for audio synthesis (2020). https://doi.org/10.48550/ARXIV.2009.09761
Liu, J., Li, C., Ren, Y., Chen, F., Zhao, Z.: DiffSinger: singing voice synthesis via shallow diffusion mechanism (2021). https://doi.org/10.48550/ARXIV.2105.02446
Liu, L., et al.: On the variance of the adaptive learning rate and beyond. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=rkgz2aEKDr
Liu, R., Sisman, B., Gao, G., Li, H.: Expressive TTS training with frame and style reconstruction loss. IEEE/ACM Trans. Audio Speech Lang. Proc. 29, 1806–1818 (2021). https://doi.org/10.1109/TASLP.2021.3076369
Ma, S., McDuff, D., Song, Y.: Neural TTS stylization with adversarial and collaborative games. In: International Conference on Learning Representations (ICLR) (2019). https://www.microsoft.com/en-us/research/publication/neural-tts-stylization-with-adversarial-and-collaborative-games/
Neekhara, P., Hussain, S., Dubnov, S., Koushanfar, F., McAuley, J.: Expressive neural voice cloning. In: Balasubramanian, V.N., Tsang, I. (eds.) Proceedings of The 13th Asian Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 157, pp. 252–267. PMLR, 17–19 November 2021. https://proceedings.mlr.press/v157/neekhara21a.html
Obin, N.: MeLos: analysis and modelling of speech prosody and speaking style. Ph.D. thesis, Ecole Doctorale Informatique, Télécommunications et Electronique (EDITE) (2011). https://tel.archives-ouvertes.fr/tel-00694687v2/document
Ren, Y., et al.: FastSpeech: fast, robust and controllable text to speech. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/f63f65b503e22cb970527f23c9ad7db1-Paper.pdf
Shen, J., et al.: Natural TTS synthesis by conditioning waveNet on MEL spectrogram predictions. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4779–4783 (2018). https://doi.org/10.1109/ICASSP.2018.8461368
Skerry-Ryan, R., et al.: Towards end-to-end prosody transfer for expressive speech synthesis with tacotron. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4693–4702. PMLR, 10–15 July 2018. https://proceedings.mlr.press/v80/skerry-ryan18a.html
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. PMLR, Lille, France, 07–09 July 2015. https://proceedings.mlr.press/v37/sohl-dickstein15.html
Stanton, D., Wang, Y., Skerry-Ryan, R.: Predicting expressive speaking style from text in end-to-end speech synthesis. In: 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 595–602 (2018). https://doi.org/10.1109/SLT.2018.8639682
Sun, G., Zhang, Y., Weiss, R.J., Cao, Y., Zen, H., Wu, Y.: Fully-hierarchical fine-grained prosody modeling for interpretable speech synthesis. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6264–6268. IEEE (2020). https://doi.org/10.1109/ICASSP40776.2020.9053520
Tits, N., Wang, F., Haddad, K.E., Pagel, V., Dutoit, T.: Visualization and interpretation of latent spaces for controlling expressive speech synthesis through audio analysis (2019). https://doi.org/10.48550/ARXIV.1903.11570
Tomczak, J.M., Welling, M.: Improving variational auto-encoders using householder flow (2016). https://doi.org/10.48550/ARXIV.1611.09630
Ueda, L.H., Costa, P.D.P., Simoes, F.O., Neto, M.U.: Are we truly modeling expressiveness? a study on expressive TTS in Brazilian Portuguese for real-life application styles. In: Proceedings of the 11th ISCA Speech Synthesis Workshop (SSW 2011), pp. 84–89 (2021). https://doi.org/10.21437/SSW.2021-15
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wang, Y., et al.: Uncovering latent style factors for expressive speech synthesis. In: NIPS Workshop on Machine Learning for Audio Signal Processing (ML4Audio) (2017)
Wang, Y., et al.: Style tokens: unsupervised style modeling, control and transfer in end-to-end speech synthesis. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 5180–5189. PMLR, 10–15 July 2018. https://proceedings.mlr.press/v80/wang18h.html
Wu, N.Q., Liu, Z.C., Ling, Z.H.: Discourse-level prosody modeling with a variational autoencoder for non-autoregressive expressive speech synthesis. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7592–7596 (2022). https://doi.org/10.1109/ICASSP43922.2022.9746238
Yamamoto, R., Song, E., Kim, J.M.: Parallel WaveGan: a fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6199–6203 (2020). https://doi.org/10.1109/ICASSP40776.2020.9053795
Zhang, Y.J., Pan, S., He, L., Ling, Z.H.: Learning latent representations for style control and transfer in end-to-end speech synthesis. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6945–6949 (2019). https://doi.org/10.1109/ICASSP.2019.8683623
Acknowledgment
The authors would like to thank the Research and Development Institute CPQD and the Ministry of Science, Technology and Innovations for supporting and funding this project. This work is supported by the BI0S - Brazilian Institute of Data Science, grant #2020/09838-0, São Paulo Research Foundation (FAPESP).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
B. de M. M. Marques, L. et al. (2022). Diffusion-Based Approach to Style Modeling in Expressive TTS. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-21686-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21685-5
Online ISBN: 978-3-031-21686-2
eBook Packages: Computer ScienceComputer Science (R0)