Abstract
In this paper, using real data from a low scale prototype of a wind turbine, different models have been obtained based on machine learning techniques. These models have been shown to be useful to forecast some key statistical metrics of the dynamics of the wind turbine. The models are dependent on the wind speed and the blade pitch angle. These models can be used to develop a digital twin of the wind turbine and predict its behavior, even for wind speed and pitch angles outside the ranges used for training the system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mikati, M., Santos, M., Armenta, C.: Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renew. Energy 57, 587–593 (2013)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rico-Azagra, J., Gil-Martínez, M., Rico, R., Nájera, S., Elvira, C.: Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad. Revista Iberoamericana de Automática e Informática industrial 18(3), 265–276 (2021)
Seo, Y.H., Ryu, M.S., Oh, K.Y.: Dynamic characteristics of an offshore wind turbine with tripod suction buckets via full-scale testing. Complexity 2020 (2020)
Serrano, C., Santos, M., Sierra-García, J.: Intelligent hybrid control of individual blade pitch for load mitigation. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds.) CONTROLO 2022. LNEE, pp. 599–608. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10047-5_53
Sierra-García, J., Santos, M.: Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial 18(4), 327–335 (2021)
Sierra-García, J.E., Santos, M.: Lookup table and neural network hybrid strategy for wind turbine pitch control. Sustainability 13(6), 3235 (2021)
Tajadura, I., Sierra-García, J.E., Santos, M.: Communication library to implement digital twins based on matlab and IEC61131. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds.) CONTROLO 2022. LNEE, pp. 262–271. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10047-5_23
Tomás-Rodríguez, M., Santos, M.: Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática Industrial 16(4), 381–390 (2019)
Veers, P.S., et al.: Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy: Int. J. Progress Appl. Wind Power Convers. Technol. 6(3), 245–259 (2003)
Acknowledgments
This work is partially supported by the Spanish Ministry of Science and Innovation under the project MCI/AEI/FEDER number RTI2018-094902-B-C21.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tecedor Roa, J., Serrano, C., Santos, M., Sierra-García, J.E. (2022). Identification of Variables of a Floating Wind Turbine Prototype. In: Yin, H., Camacho, D., Tino, P. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2022. IDEAL 2022. Lecture Notes in Computer Science, vol 13756. Springer, Cham. https://doi.org/10.1007/978-3-031-21753-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-21753-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21752-4
Online ISBN: 978-3-031-21753-1
eBook Packages: Computer ScienceComputer Science (R0)