Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identification of Variables of a Floating Wind Turbine Prototype

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2022 (IDEAL 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13756))

  • 1290 Accesses

Abstract

In this paper, using real data from a low scale prototype of a wind turbine, different models have been obtained based on machine learning techniques. These models have been shown to be useful to forecast some key statistical metrics of the dynamics of the wind turbine. The models are dependent on the wind speed and the blade pitch angle. These models can be used to develop a digital twin of the wind turbine and predict its behavior, even for wind speed and pitch angles outside the ranges used for training the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mikati, M., Santos, M., Armenta, C.: Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renew. Energy 57, 587–593 (2013)

    Article  Google Scholar 

  2. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Rico-Azagra, J., Gil-Martínez, M., Rico, R., Nájera, S., Elvira, C.: Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad. Revista Iberoamericana de Automática e Informática industrial 18(3), 265–276 (2021)

    Article  Google Scholar 

  4. Seo, Y.H., Ryu, M.S., Oh, K.Y.: Dynamic characteristics of an offshore wind turbine with tripod suction buckets via full-scale testing. Complexity 2020 (2020)

    Google Scholar 

  5. Serrano, C., Santos, M., Sierra-García, J.: Intelligent hybrid control of individual blade pitch for load mitigation. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds.) CONTROLO 2022. LNEE, pp. 599–608. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10047-5_53

    Chapter  Google Scholar 

  6. Sierra-García, J., Santos, M.: Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial 18(4), 327–335 (2021)

    Article  Google Scholar 

  7. Sierra-García, J.E., Santos, M.: Lookup table and neural network hybrid strategy for wind turbine pitch control. Sustainability 13(6), 3235 (2021)

    Article  Google Scholar 

  8. Tajadura, I., Sierra-García, J.E., Santos, M.: Communication library to implement digital twins based on matlab and IEC61131. In: Brito Palma, L., Neves-Silva, R., Gomes, L. (eds.) CONTROLO 2022. LNEE, pp. 262–271. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10047-5_23

    Chapter  Google Scholar 

  9. Tomás-Rodríguez, M., Santos, M.: Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática Industrial 16(4), 381–390 (2019)

    Article  Google Scholar 

  10. Veers, P.S., et al.: Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy: Int. J. Progress Appl. Wind Power Convers. Technol. 6(3), 245–259 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Spanish Ministry of Science and Innovation under the project MCI/AEI/FEDER number RTI2018-094902-B-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Enrique Sierra-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tecedor Roa, J., Serrano, C., Santos, M., Sierra-García, J.E. (2022). Identification of Variables of a Floating Wind Turbine Prototype. In: Yin, H., Camacho, D., Tino, P. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2022. IDEAL 2022. Lecture Notes in Computer Science, vol 13756. Springer, Cham. https://doi.org/10.1007/978-3-031-21753-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21753-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21752-4

  • Online ISBN: 978-3-031-21753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics