Abstract
The ever-increasing complexity of both Deep Neural Networks (DNN) and hardware accelerators has made the co-optimization of these domains extremely complex. Previous works typically focus on optimizing DNNs given a fixed hardware configuration or optimizing a specific hardware architecture given a fixed DNN model. Recently, the importance of the joint exploration of the two spaces draw more and more attention. Our work targets the co-optimization of DNN and hardware configurations on edge GPU accelerator. We investigate the importance of the joint exploration of DNN and edge GPU configurations. We propose an evolutionary-based co-optimization strategy for DNN by considering three metrics: DNN accuracy, execution latency, and power consumption. By combining the two search spaces, we have observed that we can explore more solutions and obtain a better tradeoff between DNN accuracy and hardware efficiency. Experimental results show that the co-optimization outperforms the optimization of DNN for fixed hardware configuration with up to 53% hardware efficiency gains for the same accuracy and latency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benmeziane, H., El Maghraoui, K., Ouarnoughi, H., Niar, S., Wistuba, M., Wang, N.: A comprehensive survey on hardware-aware neural architecture search. CoRR, abs/2101.09336 (2021)
Hao, C., et al.: FPGA/DNN co-design: an efficient design methodology for 1ot intelligence on the edge. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2019)
Nabavinejad, S.M., Reda, S., Ebrahimi, M.: Coordinated batching and DVFS for DNN inference on GPU accelerators. IEEE Trans. Parallel Distrib. Syst. (2022)
Yang, L., et al.: Co-exploration of neural architectures and heterogeneous ASIC accelerator designs targeting multiple tasks. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)
Jiang, W., et al.: Hardware/software co-exploration of neural architectures. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 39(12), 4805–4815 (2020)
Lin, Y., Hafdi, D., Wang, K., Liu, Z., Han, S.: Neural-hardware architecture search. In: NeurIPS WS (2019)
Li, Y., et al.: EDD: efficient differentiable DNN architecture and implementation co-search for embedded AI solutions. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)
Jiang, W., Yang, L., Dasgupta, S., Jingtong, H., Shi, Y.: Standing on the shoulders of giants: hardware and neural architecture co-search with hot start. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(11), 4154–4165 (2020)
Chen, W., Wang, Y., Yang, S., Liu, C., Zhang, L.: You only search once: a fast automation framework for single-stage DNN/accelerator co-design. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1283–1286. IEEE (2020)
Choi, K., Hong, D., Yoon, H., Yu, J., Kim, Y., Lee, J.: DANCE: differentiable accelerator/network co-exploration. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 337–342. IEEE (2021)
Liang, Y., et al.: An efficient hardware design for accelerating sparse CNNs with NAS-based models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 597–613 (2021)
Zhou, Y., et al.: Rethinking co-design of neural architectures and hardware accelerators. arXiv preprint arXiv:2102.08619 (2021)
Pinos, M., Mrazek, V., Sekanina, L.: Evolutionary neural architecture search supporting approximate multipliers. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 82–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_6
Sekanina, L.: Neural architecture search and hardware accelerator co-search: a survey. IEEE Access 9, 151337–151362 (2021)
Lu, Q., Jiang, W., Xu, X., Shi, Y., Hu, J.: On neural architecture search for resource-constrained hardware platforms. arXiv preprint arXiv:1911.00105 (2019)
Abdelfattah, M.S., Dudziak, Ł., Chau, T., Lee, R., Kim, H., Lane, N.D.: Best of both worlds: AutoML codesign of a CNN and its hardware accelerator. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)
Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019)
Spantidi, O., Galanis, I., Anagnostopoulos, I.: Frequency-based power efficiency improvement of CNNs on heterogeneous IoT computing systems. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6. IEEE (2020)
Liu, S., Karanth, A.: Dynamic voltage and frequency scaling to improve energy-efficiency of hardware accelerators. In: 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 232–241. IEEE (2021)
Wang, D., Li, M., Gong, C., Chandra, V.: AttentiveNAS: improving neural architecture search via attentive sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6418–6427 (2021)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Jetson developer kits and modules. https://docs.nvidia.com/jetson/l4t/. Accessed 01 May 2021
Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative deep neural network architectures. IEEE Access 6, 64270–64277 (2018)
Tang, Z., Wang, Y., Wang, Q., Chu, X.: The impact of GPU DVFs on the energy and performance of deep learning: an empirical study. In: 10th ACM International Conference on Future Energy Systems, pp. 315–325 (2019)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83
Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Wang, D., Gong, C., Li, M., Liu, Q., Chandra, V.: AlphaNet: improved training of supernets with alpha-divergence. In: International Conference on Machine Learning, pages 10760–10771. PMLR (2021)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates Inc. (2012)
Jetson AGX Xavier developer kit. https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit. Accessed 01 Feb 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bouzidi, H., Ouarnoughi, H., Talbi, EG., El Cadi, A.A., Niar, S. (2022). Evolutionary-Based Co-optimization of DNN and Hardware Configurations on Edge GPU. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-22039-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22038-8
Online ISBN: 978-3-031-22039-5
eBook Packages: Computer ScienceComputer Science (R0)