Abstract
We present a new framework for building round-optimal one-sided statistically secure two party computation (2PC) protocols in the plain model. We demonstrate that a relatively weak notion of oblivious transfer (OT), namely a three round elementary oblivious transfer \(\textsf {eOT}\) with statistical receiver privacy, along with a non-interactive commitment scheme suffices to build a one-sided statistically secure two party computation protocol with black-box simulation. Our framework enables the first instantiations of round-optimal one-sided statistically secure 2PC protocols from the CDH assumption and certain families of isogeny-based assumptions.
As part of our compiler, we introduce the following new one-sided statistically secure primitives in the pre-processing model that might also be of independent interest:
-
1.
Three round statistically sender private random-OT where only the last OT message depends on the receiver’s choice bit and the sender receives random outputs generated by the protocol.
-
2.
Four round delayed-input statistically sender private conditional disclosure of secrets where the first two rounds of the protocol are independent of the inputs of the parties.
The above primitives are directly constructed from \(\textsf {eOT}\) and hence we obtain their instantiations from the same set of assumptions as our 2PC.
S. Badrinarayanan—Work done while the author was affiliated with Visa Research USA.
S. Patranabis—Most of the work was done while the author was affiliated with Visa Research USA.
P. Sarkar—Supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout this paper, when we refer to the LPN assumption, we refer to the “extremely low-noise” variant of LPN with noise parameters in the \(O\left( \left( \log n\right) ^2/n\right) \) regime, as used in many recent works, including [BF22].
- 2.
We consider that our \(\textsf {eOT}\) protocol provides statistical receiver privacy, as opposed to the elementary OT protocol defined in [DGH+20] which only provides computational receiver privacy.
- 3.
For the five round protocol, receiver is the party that obtains output first (at the end of round four) and sender is the party that obtains output at the end of round five.
- 4.
Reciprocal CSIDH is quantum equivalent to computational CSIDH, which is weaker than decisional CSIDH. However, reciprocal CSIDH and decisional CSIDH assumptions are incomparable in the classical setting.
- 5.
It is different from the notion of semi-malicious security [MW16] where the adversary in addition to generating the the protocol messages in the support of the distribution of all honestly generated transcripts, also outputs the input and randomness that was used, on a special tape.
- 6.
Reciprocal CSIDH assumption is quantum equivalent to computational CSIDH and it is incomparable to decisional CSIDH.
References
Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_16
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Alamati, N., Montgomery, H., Patranabis, S., Sarkar, P.: Two-round adaptively secure MPC from isogenies, LPN, or CDH. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 305–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_11
Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14
Bitansky, N., Freizeit, S.: Statistically sender-private OT from LPN and derandomization. Cryptology ePrint Archive, Report 2022/185 (2022). https://ia.cr/2022/185
Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_22
Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16
Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012)
Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_20
Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO 1981, vol. ECE Report 82–04, pp. 11–15. University of California, Santa Barbara, Department of Electrical and Computer Engineering (1981)
Badrinarayanan, S., Patranabis, S., Sarkar, P.: Statistical security in two-party computation revisited. Cryptology ePrint Archive, Paper 2022/1190 (2022). https://eprint.iacr.org/2022/1190
Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020,Part II. LNCS, vol. 12551, pp. 291–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_11
Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Oblivious transfer from trapdoor permutations in minimal rounds. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 518–549. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_18
Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 241–270. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_9
Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_23
Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_26
Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. (2007)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013)
Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_23
Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)
Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_16
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM (1991)
Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_17
Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptol. 25(1), 158–193 (2012)
Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. (2009)
Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_5
Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_2
Khurana, D., Mughees, M.H.: On statistical security in two-party computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 532–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_19
Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21
Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_8
Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_8
Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_4
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)
Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_26
Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive commitments. IACR Cryptology ePrint Archive, p. 279 (2019)
Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26
Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. (1991)
Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptol. (1998)
Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao Kosaraju, S. (ed.) 12th SODA, pp. 448–457. ACM-SIAM (2001)
Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_30
Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_17
Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: 43rd FOCS, pp. 366–375. IEEE Computer Society Press (2002)
Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_14
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Badrinarayanan, S., Patranabis, S., Sarkar, P. (2022). Statistical Security in Two-Party Computation Revisited. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13748. Springer, Cham. https://doi.org/10.1007/978-3-031-22365-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-22365-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22364-8
Online ISBN: 978-3-031-22365-5
eBook Packages: Computer ScienceComputer Science (R0)