Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Statistical Security in Two-Party Computation Revisited

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13748))

Included in the following conference series:

Abstract

We present a new framework for building round-optimal one-sided statistically secure two party computation (2PC) protocols in the plain model. We demonstrate that a relatively weak notion of oblivious transfer (OT), namely a three round elementary oblivious transfer \(\textsf {eOT}\) with statistical receiver privacy, along with a non-interactive commitment scheme suffices to build a one-sided statistically secure two party computation protocol with black-box simulation. Our framework enables the first instantiations of round-optimal one-sided statistically secure 2PC protocols from the CDH assumption and certain families of isogeny-based assumptions.

As part of our compiler, we introduce the following new one-sided statistically secure primitives in the pre-processing model that might also be of independent interest:

  1. 1.

    Three round statistically sender private random-OT where only the last OT message depends on the receiver’s choice bit and the sender receives random outputs generated by the protocol.

  2. 2.

    Four round delayed-input statistically sender private conditional disclosure of secrets where the first two rounds of the protocol are independent of the inputs of the parties.

The above primitives are directly constructed from \(\textsf {eOT}\) and hence we obtain their instantiations from the same set of assumptions as our 2PC.

S. Badrinarayanan—Work done while the author was affiliated with Visa Research USA.

S. Patranabis—Most of the work was done while the author was affiliated with Visa Research USA.

P. Sarkar—Supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout this paper, when we refer to the LPN assumption, we refer to the “extremely low-noise” variant of LPN with noise parameters in the \(O\left( \left( \log n\right) ^2/n\right) \) regime, as used in many recent works, including [BF22].

  2. 2.

    We consider that our \(\textsf {eOT}\) protocol provides statistical receiver privacy, as opposed to the elementary OT protocol defined in [DGH+20] which only provides computational receiver privacy.

  3. 3.

    For the five round protocol, receiver is the party that obtains output first (at the end of round four) and sender is the party that obtains output at the end of round five.

  4. 4.

    Reciprocal CSIDH is quantum equivalent to computational CSIDH, which is weaker than decisional CSIDH. However, reciprocal CSIDH and decisional CSIDH assumptions are incomparable in the classical setting.

  5. 5.

    It is different from the notion of semi-malicious security [MW16] where the adversary in addition to generating the the protocol messages in the support of the distribution of all honestly generated transcripts, also outputs the input and randomness that was used, on a special tape.

  6. 6.

    Reciprocal CSIDH assumption is quantum equivalent to computational CSIDH and it is incomparable to decisional CSIDH.

References

  1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_16

    Chapter  Google Scholar 

  2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14

    Chapter  Google Scholar 

  3. Alamati, N., Montgomery, H., Patranabis, S., Sarkar, P.: Two-round adaptively secure MPC from isogenies, LPN, or CDH. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 305–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_11

    Chapter  Google Scholar 

  4. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14

    Chapter  Google Scholar 

  5. Bitansky, N., Freizeit, S.: Statistically sender-private OT from LPN and derandomization. Cryptology ePrint Archive, Report 2022/185 (2022). https://ia.cr/2022/185

  6. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_22

    Chapter  Google Scholar 

  7. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16

    Chapter  Google Scholar 

  8. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22

    Chapter  Google Scholar 

  9. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012)

    Google Scholar 

  10. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_20

    Chapter  Google Scholar 

  11. Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO 1981, vol. ECE Report 82–04, pp. 11–15. University of California, Santa Barbara, Department of Electrical and Computer Engineering (1981)

    Google Scholar 

  12. Badrinarayanan, S., Patranabis, S., Sarkar, P.: Statistical security in two-party computation revisited. Cryptology ePrint Archive, Paper 2022/1190 (2022). https://eprint.iacr.org/2022/1190

  13. Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020,Part II. LNCS, vol. 12551, pp. 291–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_11

    Chapter  Google Scholar 

  14. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Oblivious transfer from trapdoor permutations in minimal rounds. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 518–549. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_18

    Chapter  Google Scholar 

  15. Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 241–270. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_9

    Chapter  MATH  Google Scholar 

  16. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_23

    Chapter  Google Scholar 

  17. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_26

    Chapter  Google Scholar 

  18. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. (2007)

    Google Scholar 

  19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013)

    Google Scholar 

  20. Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_23

    Chapter  Google Scholar 

  21. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_16

    Chapter  Google Scholar 

  23. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM (1991)

    Google Scholar 

  24. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_17

    Chapter  Google Scholar 

  25. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptol. 25(1), 158–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. (2009)

    Google Scholar 

  27. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_5

    Chapter  Google Scholar 

  28. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_2

    Chapter  MATH  Google Scholar 

  29. Khurana, D., Mughees, M.H.: On statistical security in two-party computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 532–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_19

    Chapter  Google Scholar 

  30. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21

    Chapter  Google Scholar 

  31. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_8

    Chapter  Google Scholar 

  32. Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_8

    Chapter  Google Scholar 

  33. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_4

    Chapter  MATH  Google Scholar 

  34. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_26

    Chapter  Google Scholar 

  36. Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive commitments. IACR Cryptology ePrint Archive, p. 279 (2019)

    Google Scholar 

  37. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  38. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. (1991)

    Google Scholar 

  39. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptol. (1998)

    Google Scholar 

  40. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao Kosaraju, S. (ed.) 12th SODA, pp. 448–457. ACM-SIAM (2001)

    Google Scholar 

  41. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_30

    Chapter  Google Scholar 

  42. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_17

    Chapter  Google Scholar 

  43. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: 43rd FOCS, pp. 366–375. IEEE Computer Society Press (2002)

    Google Scholar 

  44. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_14

    Chapter  Google Scholar 

  45. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badrinarayanan, S., Patranabis, S., Sarkar, P. (2022). Statistical Security in Two-Party Computation Revisited. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13748. Springer, Cham. https://doi.org/10.1007/978-3-031-22365-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22365-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22364-8

  • Online ISBN: 978-3-031-22365-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics