Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Beyond Uber: Instantiating Generic Groups via PGGs

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13749))

Included in the following conference series:

  • 265 Accesses

Abstract

The generic-group model (GGM) has been very successful in making the analyses of many cryptographic assumptions and protocols tractable. It is, however, well known that the GGM is “uninstantiable,” i.e., there are protocols secure in the GGM that are insecure when using any real-world group. This motivates the study of standard-model notions formalizing that a real-world group in some sense “looks generic.”

We introduce a standard-model definition called pseudo-generic group (PGG), where we require exponentiations with base an (initially) unknown group generator to result in random-looking group elements. In essence, our framework delicately lifts the influential notion of Universal Computational Extractors of Bellare, Hoang, and Keelveedhi (BHK, CRYPTO 2013) to a setting where the underlying ideal reference object is a generic group. The definition we obtain simultaneously generalizes the Uber assumption family, as group exponents no longer need to be polynomially induced. At the core of our definitional contribution is a new notion of algebraic unpredictability, which reinterprets the standard Schwartz–Zippel lemma as a restriction on sources. We prove the soundness of our definition in the GGM with auxiliary-input (AI-GGM).

Our remaining results focus on applications of PGGs. We first show that PGGs are indeed a generalization of Uber. We then present a number of applications in settings where exponents are not polynomially induced. In particular we prove that simple variants of ElGamal meet several advanced security goals previously achieved only by complex and inefficient schemes. We also show that PGGs imply UCEs for split sources, which in turn are sufficient in several applications. As corollaries of our AI-GGM feasibility, we obtain the security of all these applications in the presence of preprocessing attacks.

Some of our implications utilize a novel type of hash function, which we call linear-dependence destroyers (LDDs) and use to convert standard into algebraic unpredictability. We give an LDD for low-degree sources, and establish their plausibility for all sources by showing, via a compression argument, that random functions meet this definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An alternative formulation of the GGM is given by Maurer [45]; we follow Shoup’s presentation in this paper. Relations and comparisons between different flavors of the GGM are discussed in the recent work [56].

  2. 2.

    Similar work on the algebraic-group model (discussed later) was first carried out in simple groups [37] and later in bilinear ones [5].

  3. 3.

    Recently, Bartusek, Ma, and Zhandry (BMZ) [4] studied the “fixed-generator” and “random-generator” settings in group-based assumptions. We necessarily work in the latter since, as we shall see, otherwise attacks arise.

  4. 4.

    The idea is to have assumptions and models organized into a hierarchy, where higher levels justify lower ones and, conversely, proving a scheme secure at some level shows that it meets higher ones as well. This allows us to identify precisely how strong an assumption is needed for a given application. Moreover, proving security of a scheme at a lower level typically gives more insight into its inner workings.

  5. 5.

    We note that our understanding of the role played by the AGM in assessing the hardness of group-related assumptions is evolving in light of recent works [43, 56].

  6. 6.

    Note that \(\sigma \) can be lazily sampled, so that the game runs in polynomial time.

  7. 7.

    For instance, one could allow for more expressive forms of post-processing. However, we have not yet been able to find applications of this wider class of sources.

  8. 8.

    On the other hand, it is unclear how to rule this attack out using an extended notion of algebraic unpredictability that takes operation queries into account.

  9. 9.

    In particular, this model allows a restricted class of sources that leak arbitrary information (without any unpredictability requirements), as long as the sampling of the exponents is unpredictable (e.g., random, as is the case for the DLP).

  10. 10.

    Distinguish \((g, g^x, g^y, g^{xy})\) from \((g, g^x, g^y, g^z)\) for a random generator g, unpredictable x, and random y and z.

  11. 11.

    Accordingly, we also impose a statistical notion of unpredictability on sources by giving predictors access to the full table.

  12. 12.

    Interestingly, this simplification provides another avenue to circumvent iO-based attacks that exploit repetitions in \(\textbf{x}\).

  13. 13.

    We note, however, that in iterative constructions of block-ciphers from hash functions [12], or indeed in domain extenders for hash functions [52], adaptive calls to the hash function seem to be necessary.

References

  1. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 341–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_12

    Chapter  Google Scholar 

  2. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model from falsifiable assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 96–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_4

    Chapter  Google Scholar 

  3. Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_29

    Chapter  Google Scholar 

  4. Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_27

    Chapter  MATH  Google Scholar 

  5. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_5

    Chapter  MATH  Google Scholar 

  6. Bauer, B., Farshim, P., Harasser, P., O’Neill, A.: Beyond Uber: Instantiating Generic Groups via PGGs. Cryptology ePrint Archive, Paper 2022/1502 (2022)

    Google Scholar 

  7. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

    Chapter  Google Scholar 

  8. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged public-key encryption: how to protect against bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_14

    Chapter  Google Scholar 

  9. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_26

    Chapter  Google Scholar 

  10. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_21

    Chapter  Google Scholar 

  11. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_23

    Chapter  Google Scholar 

  12. Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression functions: the UCE bridge to the ROM. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 169–187. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_10

    Chapter  Google Scholar 

  13. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_17

    Chapter  Google Scholar 

  14. Birrell, E., Chung, K.-M., Pass, R., Telang, S.: Randomness-dependent message security. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 700–720. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_39

    Chapter  Google Scholar 

  15. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_28

    Chapter  Google Scholar 

  16. Black, J.: The ideal-cipher model, revisited: an uninstantiable blockcipher-based hash function. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_21

    Chapter  Google Scholar 

  17. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_6

    Chapter  MATH  Google Scholar 

  18. Böhl, F., Davies, G.T., Hofheinz, D.: Encryption schemes secure under related-key and key-dependent message attacks. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 483–500. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_28

    Chapter  MATH  Google Scholar 

  19. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

    Chapter  Google Scholar 

  20. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_7

    Chapter  Google Scholar 

  21. Boyen, X.: The uber-assumption family (invited talk). In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_3

    Chapter  Google Scholar 

  22. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_11

    Chapter  Google Scholar 

  23. Brzuska, C., Mittelbach, A.: Using Indistinguishability Obfuscation via UCEs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 122–141. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_7

    Chapter  Google Scholar 

  24. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  25. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

    Chapter  Google Scholar 

  26. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_28

    Chapter  Google Scholar 

  27. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC (1998)

    Google Scholar 

  28. Canetti, R., Goldreich, O., Halevi, S. : The random oracle methodology, revisited. J. ACM 51(4) (2004)

    Google Scholar 

  29. Coretti, S., Dodis, Y., Guo, S.: Non-Uniform bounds in the random-permutation, ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_23

    Chapter  MATH  Google Scholar 

  30. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocessing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_14

    Chapter  Google Scholar 

  31. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  32. Damgård, I., Hazay, C., Zottarel, A.: Short paper on the generic hardness of DDH-II (2014)

    Google Scholar 

  33. Demillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4) (1978)

    Google Scholar 

  34. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_6

    Chapter  Google Scholar 

  35. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  36. Fenteany, P., Fuller, B.: Same point composable and nonmalleable obfuscated point functions. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 124–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7_7

    Chapter  MATH  Google Scholar 

  37. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  38. Gennaro, R. , Trevisan, L.: Lower bounds on the efficiency of generic cryptographic constructions. In: 41st FOCS (2000)

    Google Scholar 

  39. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_12

    Chapter  Google Scholar 

  40. Green, M.D., Katz, J., Malozemoff, A.J., Zhou, H.-S.: A unified approach to idealized model separations via indistinguishability obfuscation. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 587–603. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_31

    Chapter  Google Scholar 

  41. Hemenway, B., Ostrovsky, R.: Building lossy trapdoor functions from lossy encryption. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 241–260. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_13

    Chapter  Google Scholar 

  42. Kastner, J., Pan, J.: Towards instantiating the algebraic group model. Cryptology ePrint Archive, Report 2019/1018 (2019)

    Google Scholar 

  43. Katz, J., Zhang, C., Zhou, H.-S.: An analysis of the algebraic group model. Cryptology ePrint Archive, Report 2022/210 (2022)

    Google Scholar 

  44. Komargodski, I., Yogev, E.: Another step towards realizing random oracles: non-malleable point obfuscation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 259–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_10

    Chapter  Google Scholar 

  45. Maurer, U.: Abstract models of computation in cryptography (invited paper). In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1

    Chapter  MATH  Google Scholar 

  46. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS (1997)

    Google Scholar 

  47. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Math. Notes 55(2) (1994)

    Google Scholar 

  48. Paterson, K.G., Schuldt, J.C.N., Sibborn, D.L.: Related randomness attacks for public key encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 465–482. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_27

    Chapter  MATH  Google Scholar 

  49. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4) (1980)

    Google Scholar 

  50. Shoup, V.: On fast and provably secure message authentication based on universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_24

    Chapter  Google Scholar 

  51. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  52. Soni, P., Tessaro, S.: Public-seed pseudorandom permutations. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 412–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_14

    Chapter  Google Scholar 

  53. Soni, P., Tessaro, S.: Naor-Reingold goes public: the complexity of known-key security. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 653–684. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_21

    Chapter  Google Scholar 

  54. Vadhan, S.P.: Pseudorandomness. Now Publishers (2012)

    Google Scholar 

  55. Zhandry, M.: The magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_18

    Chapter  Google Scholar 

  56. Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13509, pp. 66–96. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_3

  57. Zhandry, M., Zhang, C.: The relationship between idealized models under computationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240 (2021)

    Google Scholar 

  58. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Sogol Mazaheri for collaborating in the early stages of this work. We also thank anonymous reviewers who helped improve the presentation of our results. Pooya Farshim was supported in part by EPSRC grant EP/V034065/1. Patrick Harasser was funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297. Adam O’Neill is supported in part by a gift from Cisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Harasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, B., Farshim, P., Harasser, P., O’Neill, A. (2022). Beyond Uber: Instantiating Generic Groups via PGGs. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13749. Springer, Cham. https://doi.org/10.1007/978-3-031-22368-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22368-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22367-9

  • Online ISBN: 978-3-031-22368-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics