Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GCNPart: Interference-Aware Resource Partitioning Framework with Graph Convolutional Neural Networks and Deep Reinforcement Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13777))

  • 1839 Accesses

Abstract

The clouding server providers usually take workload consolidation to maximize server utilization. For eliminating performance interference due to the competition among multiple shared resources, resource partitioning becomes an important problem in daily commercial servers scenario. However, partitioning the critical multiple resources coordinately is particularly challenging due to the complex contention behaviors and the large search space to be explored for finding the optimal solution.

In this paper, we propose GCNPart, which focuses on allocating the optimal shared compete resource partition for colocated applications to optimize system performance. The existing resource partitioning frameworks lack analysis and good modeling of applications, resulting in inefficiencies or lack of generality. We formulate the resource partitioning problem as a sequential decision problem. GCNPart builds an accurate application performance model based on graph convolutional neural networks (GCN) to learn the mapping relationships from multiple resources to applications, and then constructs deep reinforcement learning (DRL) model to consider temporal information for real-time resource partitioning decisions. The extensive experiments evaluate that compared with the existing resource partitioning frameworks, GCNPart improves system throughput by 5.35% \(\sim \) 26.57%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The python performance benchmark suite. https://pyperformance.readthedocs.io/ (2006)

  2. The spec cpu®2006 benchmark suite. https://www.spec.org/cpu2006/ (2006)

  3. The spec cpu®2017 benchmark suite. https://www.spec.org/cpu2017/ (2017)

  4. Andrew, H., Abbasi, K.M., Marcel, C.: Introduction to memory bandwidth allocation. https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation (2019)

  5. Brownlee, J.: Gentle introduction to the adam optimization algorithm for deep learning. Machine Learning Mastery 3 (2017)

    Google Scholar 

  6. Chen, R., Wu, J., Shi, H., Li, Y., Liu, X., Wang, G.: DRLPart: a deep reinforcement learning framework for optimally efficient and robust resource partitioning on commodity servers. In: Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing, pp. 175–188. Association for Computing Machinery (2020)

    Google Scholar 

  7. Chen, S., Delimitrou, C., Martínez, F.J.: Parties: QoS-aware resource partitioning for multiple interactive services. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 107–120 (2019)

    Google Scholar 

  8. Cheng, Y., Chen, W., Wang, Z., Xiang, Y.: Precise contention-aware performance prediction on virtualized multicore system. J. Syst. Archit. 72, 42–50 (2017)

    Article  Google Scholar 

  9. Delimitrou, C., Kozyrakis, C.: QoS-aware scheduling in heterogeneous datacenters with paragon

    Google Scholar 

  10. Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous datacenters. In: Proceedings of the 18th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). vol. 48, pp. 77–88. ACM (2013)

    Google Scholar 

  11. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster management. ACM SIGPLAN Notices 49(4), 127–144 (2014)

    Article  Google Scholar 

  12. Du, B., Wu, C., Huang, Z.: Learning resource allocation and pricing for cloud profit maximization. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) (2019)

    Google Scholar 

  13. Dublish, S., Nagarajan, V., Topham, N.: Poise: Balancing thread-level parallelism and memory system performance in GPUs using machine learning. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 492–505 (2019)

    Google Scholar 

  14. El-Sayed, N., Mukkara, A., Tsai, P.A., Kasture, H., Ma, X., Sanchez, D.: Kpart: A hybrid cache partitioning-sharing technique for commodity multicores. In: 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 104–117. IEEE (2018)

    Google Scholar 

  15. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis 30(2), 129–150 (2011). https://doi.org/10.1016/j.acha.2010.04.005, https://www.sciencedirect.com/science/article/pii/S1063520310000552

  16. Kasture, H., Sanchez, D.: Ubik: efficient cache sharing with strict QoS for latency-critical workloads. In: Proceedings of the 19th international conference on Architectural support for programming languages and operating systems (ASPLOS), vol. 49, pp. 729–742 (2014)

    Google Scholar 

  17. Li, S., Wang, L., Wang, W., Yu, Y., Li, B.: George: Learning to place long-lived containers in large clusters with operation constraints. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 258–272 (2021)

    Google Scholar 

  18. Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., Kozyrakis, C.: Heracles: Improving resource efficiency at scale. In: International Symposium on Computer Architecture (ISCA), vol. 43, pp. 450–462. ACM (2015)

    Google Scholar 

  19. Mars, J., Tang, L., Hundt, R., Skadron, K., Soffa, M.L.: Bubble-up: Increasing utilization in modern warehouse scale computers via sensible co-locations. In: Proceedings of the 44th annual IEEE/ACM International Symposium on Microarchitecture, pp. 248–259 (2011)

    Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  21. Nguyen, K.T.: Introduction to cache allocation technology in the intel® xeon® processor e5 v4 family. https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology/ (2019)

  22. Nikas, K., Papadopoulou, N., Giantsidi, D., Karakostas, V., Goumas, G., Koziris, N.: Dicer: Diligent cache partitioning for efficient workload consolidation. In: Proceedings of the 48th International Conference on Parallel Processing, p. 15 (2019)

    Google Scholar 

  23. Park, J., Park, S., Baek, W.: Copart: Coordinated partitioning of last-level cache and memory bandwidth for fairness-aware workload consolidation on commodity servers. In: Proceedings of the Fourteenth EuroSys Conference 2019, pp. 1–10 (2019)

    Google Scholar 

  24. Park, J., Park, S., Han, M., Hyun, J., Baek, W.: Hypart: A hybrid technique for practical memory bandwidth partitioning on commodity servers. In: Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, pp. 1–14 (2018)

    Google Scholar 

  25. Patel, T., Tiwari, D.: Clite: Efficient and QoS-aware co-location of multiple latency-critical jobs for warehouse scale computers. In: 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 193–206 (2020). https://doi.org/10.1109/HPCA47549.2020.00025

  26. Pelikan, M., Sastry, K., Goldberg, D.E.: Scalability of the Bayesian optimization algorithm. Int. J. Approximate Reasoning 31(3), 221–258 (2002)

    Article  MATH  Google Scholar 

  27. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition shared caches. In: Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 423–432 (2006)

    Google Scholar 

  28. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-making. J. Artif. Intell. Res. 48, 67–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roy, R.B., Patel, T., Tiwari, D.: Satori: efficient and fair resource partitioning by sacrificing short-term benefits for long-term gains. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp. 292–305. IEEE (2021)

    Google Scholar 

  30. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT press (2018)

    Google Scholar 

  31. Tang, L., Mars, J., Vachharajani, N., Hundt, R., Soffa, M.L.: The impact of memory subsystem resource sharing on datacenter applications. In: 2011 38th Annual International Symposium on Computer Architecture (ISCA), pp. 283–294. IEEE (2011)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008 (2017)

    Google Scholar 

  33. Wang, L., Weng, Q., Wang, W., Chen, C., Li, B.: Metis: Learning to schedule long-running applications in shared container clusters at scale. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–17. IEEE (2020)

    Google Scholar 

  34. Wu, Z., Pan, S., Chen, F., Long, G., Yu, P.S.: A comprehensive survey on graph neural networks (2019)

    Google Scholar 

  35. Xiang, Y., Wang, X., Huang, Z., Wang, Z., Luo, Y., Wang, Z.: Dcaps: dynamic cache allocation with partial sharing. In: Proceedings of the Thirteenth EuroSys Conference 2018, p. 13 (2018)

    Google Scholar 

  36. Xiao, J., Pimentel, A.D., Liu, X.: CPPF: A prefetch aware LLC partitioning approach. In: Proceedings of the 48th International Conference on Parallel Processing, pp. 1–10 (2019)

    Google Scholar 

  37. Xu, C., Rajamani, K., Ferreira, A., Felter, W., Rubio, J., Li, Y.: DCAT: dynamic cache management for efficient, performance-sensitive infrastructure-as-a-service. In: Proceedings of the Thirteenth EuroSys Conference 2018, p. 14 (2018)

    Google Scholar 

Download references

Acknowledgment

This work is supported by Key-Area Research and Development Program of Guangdong Province 2021B0101310002; State Key Laboratory of Computer Architecture, ICT, CAS, under Grant No. CARCHB202013; National Science Foundation of China (62141412, 61872201); Science and Technology Development Plan of Tianjin (20JCZDJC00610); Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Shi, H., Wu, J., Li, Y., Liu, X., Wang, G. (2023). GCNPart: Interference-Aware Resource Partitioning Framework with Graph Convolutional Neural Networks and Deep Reinforcement Learning. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22677-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22676-2

  • Online ISBN: 978-3-031-22677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics