Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance vary from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we investigate the rectangle key recovery in depth and propose a unified and generic key recovery algorithm, which supports any possible attacking parameters. Notably, it not only covers the four previous rectangle key recovery algorithms, but also unveils five types of new attacks which were missed previously. Along with the new key recovery algorithm, we propose a framework for automatically finding the best attacking parameters, with which the time complexity of the rectangle attack will be minimized using the new algorithm. To demonstrate the efficiency of the new key recovery algorithm, we apply it to Serpent, CRAFT, SKINNY and Deoxys-BC-256 based on existing distinguishers and obtain a series of improved rectangle attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If both \((P_1,P_2)\) and \((P_3,P_4)\) satisfy \(\alpha \) difference, then we can form two quartets: \((P_1,P_2,P_3,P_4)\) and \((P_1,P_2,P_4,P_3)\).

  2. 2.

    The number of filters for plaintext pairs is \(n-r^*_b\) while it is \(n-r^*_f+\mu \) for ciphertext pairs.

  3. 3.

    “Key bridging” is borrowed from [DKS10a, DKS15] which originally connects two subkeys separated by several key mixing steps.

  4. 4.

    https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?usp=sharing.

  5. 5.

    The key counters can be set flexibly. Thus the memory cost for them is elastic.

  6. 6.

    In [DQSW22], a rectangle attack on 10-round Serpent was also given. However, the authors seem to mistake \(m_f,r_f\) for \(m_b,r_b\). So we do not include their result in Table 3.

References

  1. Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the advanced encryption standard. NIST AES Proposal 174, 1–23 (1998)

    Google Scholar 

  2. Broll, M., Canale, F., Flórez-Gutiérrez, A., Leander, G., Naya-Plasencia, M.: Generic framework for key-guessing improvements. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 453–483. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_16

    Chapter  Google Scholar 

  3. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21

    Chapter  Google Scholar 

  4. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_1

    Chapter  Google Scholar 

  5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  6. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1

    Chapter  Google Scholar 

  7. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol. 2019(1), 5–45 (2019)

    Article  Google Scholar 

  8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

    Article  MATH  Google Scholar 

  9. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2017(3), 73–107 (2017)

    Google Scholar 

  10. Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22

    Chapter  Google Scholar 

  11. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_10

    Chapter  Google Scholar 

  12. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_21

    Chapter  MATH  Google Scholar 

  13. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849 (2014)

    Article  MATH  Google Scholar 

  14. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round AES-192 and AES-256. J. Cryptol. 28(3), 397–422 (2015)

    Article  MATH  Google Scholar 

  15. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule algorithms in rectangle attacks. IACR Cryptol. ePrint Arch., p. 856 (2021)

    Google Scholar 

  16. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule algorithms in rectangle attacks. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol 13277, pp. 3-33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_1

  17. Hadipour, H., Bagheri, N., Song, L.: Improved rectangle attacks on SKINNY and CRAFT. IACR Trans. Sym. Cryptol., 140–198 (2021)

    Google Scholar 

  18. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset- improved cube attacks against Trivium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_17

    Chapter  Google Scholar 

  19. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

    Chapter  Google Scholar 

  20. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1. 41. Submitted to CAESAR, 124 (2016)

    Google Scholar 

  21. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_6

    Chapter  Google Scholar 

  22. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8

    Chapter  Google Scholar 

  23. Kidmose, A.B., Tiessen, T.: A formal analysis of boomerang probabilities. IACR Trans. Symmetric Cryptol. 2022(1), 88–109 (2022)

    Article  Google Scholar 

  24. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings. IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017)

    Article  Google Scholar 

  25. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory 57(4), 2517–2521 (2011)

    Article  MATH  Google Scholar 

  26. Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated search oriented to key recovery on ciphers with linear key schedule applications to boomerangs in SKINNY and forkskinny. IACR Trans. Symmetric Cryptol. 2021(2), 249–291 (2021)

    Article  Google Scholar 

  27. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)

    Google Scholar 

  28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Chapter  Google Scholar 

  29. Song, L., Qin, X., Lei, H.: Boomerang connectivity table revisited: application to SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019(1), 118–141 (2019)

    Article  Google Scholar 

  30. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the Demirci-Selçuk meet-in-the-middle attack with constraints. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 3–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_1

    Chapter  Google Scholar 

  31. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1), 269–315 (2021)

    Article  Google Scholar 

  32. Song, L., et al.: Optimizing rectangle attacks: a unified and generic framework for key recovery. IACR Cryptol. ePrint Arch., p. 723 (2022)

    Google Scholar 

  33. Wagner, D.: The Boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

  34. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. Application to AES variants and deoxys. IACR Trans. Symmetric Cryptol. 2019(1), 142–169 (2019)

    Article  Google Scholar 

  35. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol. 2019(3), 121–151 (2019)

    Article  Google Scholar 

  36. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Des. Codes Crypt. 88(6), 1103–1126 (2020). https://doi.org/10.1007/s10623-020-00730-1

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank anonymous reviewers for their helpful comments and suggestions. The work of this paper was supported by the National Natural Science Foundation of China (Grants 62022036, 62132008, 62202460, 62172410, 61732021), the National Key Research and Development Program (No. 2022YFB2701900, No. 2018YFA0704704 and No. 2018YFB0803801). Jian Weng was supported by Major Program of Guangdong Basic and Applied Research Project under Grant No. 2019B030302008, National Natural Science Foundation of China under Grant No. 61825203, Guangdong Provincial Science and Technology Project under Grant No. 2021A0505030033, National Joint Engineering Research Center of Network Security Detection and Protection Technology, and Guangdong Key Laboratory of Data Security and Privacy Preserving.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, L. et al. (2022). Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22963-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22962-6

  • Online ISBN: 978-3-031-22963-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics