Abstract
The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance vary from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we investigate the rectangle key recovery in depth and propose a unified and generic key recovery algorithm, which supports any possible attacking parameters. Notably, it not only covers the four previous rectangle key recovery algorithms, but also unveils five types of new attacks which were missed previously. Along with the new key recovery algorithm, we propose a framework for automatically finding the best attacking parameters, with which the time complexity of the rectangle attack will be minimized using the new algorithm. To demonstrate the efficiency of the new key recovery algorithm, we apply it to Serpent, CRAFT, SKINNY and Deoxys-BC-256 based on existing distinguishers and obtain a series of improved rectangle attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If both \((P_1,P_2)\) and \((P_3,P_4)\) satisfy \(\alpha \) difference, then we can form two quartets: \((P_1,P_2,P_3,P_4)\) and \((P_1,P_2,P_4,P_3)\).
- 2.
The number of filters for plaintext pairs is \(n-r^*_b\) while it is \(n-r^*_f+\mu \) for ciphertext pairs.
- 3.
- 4.
- 5.
The key counters can be set flexibly. Thus the memory cost for them is elastic.
- 6.
References
Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the advanced encryption standard. NIST AES Proposal 174, 1–23 (1998)
Broll, M., Canale, F., Flórez-Gutiérrez, A., Leander, G., Naya-Plasencia, M.: Generic framework for key-guessing improvements. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 453–483. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_16
Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21
Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_1
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1
Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol. 2019(1), 5–45 (2019)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563
Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2017(3), 73–107 (2017)
Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22
Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_10
Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_21
Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849 (2014)
Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round AES-192 and AES-256. J. Cryptol. 28(3), 397–422 (2015)
Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule algorithms in rectangle attacks. IACR Cryptol. ePrint Arch., p. 856 (2021)
Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule algorithms in rectangle attacks. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol 13277, pp. 3-33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_1
Hadipour, H., Bagheri, N., Song, L.: Improved rectangle attacks on SKINNY and CRAFT. IACR Trans. Sym. Cryptol., 140–198 (2021)
Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset- improved cube attacks against Trivium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_17
Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15
Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1. 41. Submitted to CAESAR, 124 (2016)
Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_6
Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8
Kidmose, A.B., Tiessen, T.: A formal analysis of boomerang probabilities. IACR Trans. Symmetric Cryptol. 2022(1), 88–109 (2022)
Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings. IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017)
Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory 57(4), 2517–2521 (2011)
Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated search oriented to key recovery on ciphers with linear key schedule applications to boomerangs in SKINNY and forkskinny. IACR Trans. Symmetric Cryptol. 2021(2), 249–291 (2021)
Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Song, L., Qin, X., Lei, H.: Boomerang connectivity table revisited: application to SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019(1), 118–141 (2019)
Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the Demirci-Selçuk meet-in-the-middle attack with constraints. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 3–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_1
Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1), 269–315 (2021)
Song, L., et al.: Optimizing rectangle attacks: a unified and generic framework for key recovery. IACR Cryptol. ePrint Arch., p. 723 (2022)
Wagner, D.: The Boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12
Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. Application to AES variants and deoxys. IACR Trans. Symmetric Cryptol. 2019(1), 142–169 (2019)
Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol. 2019(3), 121–151 (2019)
Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Des. Codes Crypt. 88(6), 1103–1126 (2020). https://doi.org/10.1007/s10623-020-00730-1
Acknowledgement
The authors would like to thank anonymous reviewers for their helpful comments and suggestions. The work of this paper was supported by the National Natural Science Foundation of China (Grants 62022036, 62132008, 62202460, 62172410, 61732021), the National Key Research and Development Program (No. 2022YFB2701900, No. 2018YFA0704704 and No. 2018YFB0803801). Jian Weng was supported by Major Program of Guangdong Basic and Applied Research Project under Grant No. 2019B030302008, National Natural Science Foundation of China under Grant No. 61825203, Guangdong Provincial Science and Technology Project under Grant No. 2021A0505030033, National Joint Engineering Research Center of Network Security Detection and Protection Technology, and Guangdong Key Laboratory of Data Security and Privacy Preserving.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Song, L. et al. (2022). Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-22963-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22962-6
Online ISBN: 978-3-031-22963-3
eBook Packages: Computer ScienceComputer Science (R0)