Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ARGLRR: An Adjusted Random Walk Graph Regularization Sparse Low-Rank Representation Method for Single-Cell RNA-Sequencing Data Clustering

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13760))

Included in the following conference series:

  • 775 Accesses

Abstract

Researchers may now explore biological concerns at the cell level because of the advancement of single-cell transcriptome sequencing technologies. One of the primary applications of single-cell RNA-seq (scRNA-seq) data is to identify cell types by clustering to reveal cell heterogeneity. However, due to characteristics such as higher noise and lesser coverage of scRNA-seq, the accuracy of existing clustering methods is compromised. Here, we propose a method called Adjusted Random walk Graph regularization Sparse Low-Rank Representation (ARGLRR), a practical sparse subspace clustering method, to identify cell types. The basic Low-Rank Representation (LRR) model focuses primarily on the global structure of data. We add adjusted random walk graph regularization to the framework of LRR, which makes up for the lack of local structure capture capability of LRR. With this method, the local and global structure of the scRNA-seq data will be captured. By imposing the similarity constraint on the LRR model, the cell-to-cell similarity estimation process further enhances the capacity of the proposed model to capture the global structural relationships between cells. The results on nine published scRNA-seq datasets demonstrate that ARGLRR outperforms other advanced comparison methods. Our method improves 6.99% and 5.85% over the best-performing comparison method in NMI and ARI metrics on the scRNA-seq datasets clustering experiments, respectively. We also use UMAP to visualize the learned similarity matrix and find that the similarity matrix obtained by ARGLRR improves the separation of cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H.-Y., Zhao, J.-P., Zheng, C.-H., Su, Y.-S.: scCNC: a method based on capsule network for clustering scRNA-seq data. Bioinformatics, btac393 (2022). https://doi.org/10.1093/bioinformatics/btac393

  2. Wang, C., Mu, Z., Mou, C., Zheng, H., Liu, J.: Consensus-based clustering of single cells by reconstructing cell-to-cell dissimilarity. Brief. Bioinform. 23, bbab379 (2022). https://doi.org/10.1093/bib/bbab379

  3. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013). https://doi.org/10.1109/TPAMI.2012.88

    Article  PubMed  Google Scholar 

  4. Zheng, R., Li, M., Liang, Z., Wu, F.-X., Pan, Y., Wang, J.: SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Bioinformatics 35, 3642–3650 (2019). https://doi.org/10.1093/bioinformatics/btz139

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, W., Li, Y., Zou, X.: SCCLRR: A robust computational method for accurate clustering single cell RNA-Seq data. IEEE J. Biomed. Health Inform. 25, 247–256 (2021). https://doi.org/10.1109/JBHI.2020.2991172

    Article  PubMed  Google Scholar 

  6. Cheng, T., Wang, B.: Graph and total variation regularized low-rank representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 58, 391–406 (2020). https://doi.org/10.1109/TGRS.2019.2936609

    Article  Google Scholar 

  7. Lu, X., Wang, Y., Yuan, Y.: Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51, 4009–4018 (2013). https://doi.org/10.1109/TGRS.2012.2226730

    Article  Google Scholar 

  8. Du, H., Zhang, X., Hu, Q., Hou, Y.: Sparse representation-based robust face recognition by graph regularized low-rank sparse representation recovery. Neurocomputing 164, 220–229 (2015). https://doi.org/10.1016/j.neucom.2015.02.067

    Article  Google Scholar 

  9. Zheng, R., Liang, Z., Chen, X., Tian, Y., Cao, C., Li, M.: An adaptive sparse subspace clustering for cell type identification. Front. Genet. 11, 407 (2020). https://doi.org/10.3389/fgene.2020.00407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 1–37 (2011). https://doi.org/10.1145/1970392.1970395

    Article  Google Scholar 

  11. Cai, D., Wang, X., He, X.: Probabilistic dyadic data analysis with local and global consistency. In: Proceedings of the 26th Annual International Conference on Machine Learning - ICML 2009, Montreal, Quebec, Canada, pp. 1–8. ACM Press (2009)

    Google Scholar 

  12. Dai, L.-Y., Feng, C.-M., Liu, J.-X., Zheng, C.-H., Yu, J., Hou, M.-X.: Robust nonnegative matrix factorization via joint graph Laplacian and discriminative information for identifying differentially expressed genes. Complexity 2017, 1–11 (2017)

    Article  CAS  Google Scholar 

  13. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems. MIT Press (2001)

    Google Scholar 

  14. Yin, H., Zaki, S.M.: A self-organising multi-manifold learning algorithm. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, FcoJavier, Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 389–398. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18833-1_41

    Chapter  Google Scholar 

  15. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  16. von Luxburg, U.: A tutorial on spectral clustering (2007). http://arxiv.org/abs/0711.0189

  17. Kiselev, V., et al.: SC3 - consensus clustering of single-cell RNA-Seq data. Bioinformatics (2016). https://doi.org/10.1101/036558

    Article  Google Scholar 

  18. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions, 35. https://doi.org/10.5555/777092.777110

  19. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  20. Liu, H., Zhao, R., Fang, H., Cheng, F., Fu, Y., Liu, Y.-Y.: Entropy-based consensus clustering for patient stratification supplementary information, 32 (2017)

    Google Scholar 

  21. Jiang, H., Sohn, L.L., Huang, H., Chen, L.: Single cell clustering based on cell-pair differentiability correlation and variance analysis. Bioinformatics (2018). https://doi.org/10.1093/bioinformatics/bty390

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park, S., Zhao, H.: Spectral clustering based on learning similarity matrix. Bioinformatics 34, 2069–2076 (2018). https://doi.org/10.1093/bioinformatics/bty050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  24. Bro, R., Smilde, A.K.: Principal component analysis. Anal. Methods 6, 2812–2831 (2014). https://doi.org/10.1039/C3AY41907J

    Article  CAS  Google Scholar 

  25. Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019). https://doi.org/10.1038/nbt.4314

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62172253, 62172254, 61972226, and 61902215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, ZC., Liu, JX., Shang, JL., Dai, LY., Zheng, CH., Wang, J. (2022). ARGLRR: An Adjusted Random Walk Graph Regularization Sparse Low-Rank Representation Method for Single-Cell RNA-Sequencing Data Clustering. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics