Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1690))

Included in the following conference series:

  • 632 Accesses

Abstract

Image processing, extraction of appropriate data classifiers, and machine learning algorithms are key steps in plant phenotyping that connects genomics with plant ecophysiology and agronomy. Based on a dataset of labeled images from Populus Trichocarpa genotypes cultivated under both drought and control conditions, we are able to extract potential data classifiers such as leaf color and edge morphology, and to develop a predictive model by using PlantCV. The use of Tesseract and OpenCV has not reached the needed successes that are required for a proper workflow, such as data preparation, training the module, tuning parameters, and others. Despite many existing challenges, progresses reported here gives possible future directions can mitigate these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, M. (2022). Machine Learning Approaches to High Throughput Phenotyping. In: Doug, K., Al, G., Pophale, S., Liu, H., Parete-Koon, S. (eds) Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation. SMC 2022. Communications in Computer and Information Science, vol 1690. Springer, Cham. https://doi.org/10.1007/978-3-031-23606-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23606-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23605-1

  • Online ISBN: 978-3-031-23606-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics