Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluation of Group Fairness Measures in Student Performance Prediction Problems

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Predicting students’ academic performance is one of the key tasks of educational data mining (EDM). Traditionally, the high forecasting quality of such models was deemed critical. More recently, the issues of fairness and discrimination w.r.t. protected attributes, such as gender or race, have gained attention. Although there are several fairness-aware learning approaches in EDM, a comparative evaluation of these measures is still missing. In this paper, we evaluate different group fairness measures for student performance prediction problems on various educational datasets and fairness-aware learning models. Our study shows that the choice of the fairness measure is important, likewise for the choice of the grade threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The number of citations is reported by Google Scholar on \(1^{st}\) August 2022.

  2. 2.

    https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-post-training-bias-metric-te.html.

  3. 3.

    https://github.com/tailequy/fairness_dataset/tree/main/Law_school.

  4. 4.

    https://www.kaggle.com/econdata/pisa-test-scores.

  5. 5.

    https://archive.ics.uci.edu/ml/datasets/Student+Academics+Performance.

  6. 6.

    https://archive.ics.uci.edu/ml/datasets/student+performance.

  7. 7.

    https://www.kaggle.com/datasets/aljarah/xAPI-Edu-Data.

  8. 8.

    https://github.com/Trusted-AI/AIF360.

  9. 9.

    We use the abbreviations of the fairness measures and datasets in Fig. 7.

References

  1. Abu Saa, A., Al-Emran, M., Shaalan, K.: Factors affecting students’ performance in higher education: a systematic review of predictive data mining techniques. Technol. Knowl. Learn. 24(4), 567–598 (2019)

    Article  Google Scholar 

  2. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H.: A reductions approach to fair classification. In: ICML, pp. 60–69. PMLR (2018)

    Google Scholar 

  3. Alvero, A., et al.: AI and holistic review: informing human reading in college admissions. In: AIES, pp. 200–206. ACM (2020). https://doi.org/10.1145/3375627.3375871

  4. Amrieh, E.A., Hamtini, T., Aljarah, I.: Preprocessing and analyzing educational data set using x-api for improving student’s performance. In: AEECT, pp. 1–5. IEEE (2015). https://doi.org/10.1109/AEECT.2015.7360581

  5. Anders, J., Dilnot, C., Macmillan, L., Wyness, G.: Grade expectations: how well can we predict future grades based on past performance? CEPEO Working Paper No. 20–14 (2020)

    Google Scholar 

  6. Anderson, H., Boodhwani, A., Baker, R.S.: Assessing the fairness of graduation predictions. In: EDM (2019)

    Google Scholar 

  7. Berhanu, F., Abera, A.: Students’ performance prediction based on their academic record. Int. J. Comput. Appl. 131(5), 0975–8887 (2015)

    Google Scholar 

  8. Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal justice risk assessments: the state of the art. Soc. Methods Res. 50(1), 3–44 (2021). https://doi.org/10.1177/0049124118782533

    Article  Google Scholar 

  9. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big data 5(2), 153–163 (2017)

    Article  Google Scholar 

  10. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic decision making and the cost of fairness. In: KDD, pp. 797–806 (2017)

    Google Scholar 

  11. Cortez, P., Silva, A.M.G.: Using data mining to predict secondary school student performance (2008). https://hdl.handle.net/1822/8024

  12. Ding, F., Hardt, M., Miller, J., Schmidt, L.: Retiring adult: new datasets for fair machine learning. NeurIPS 34, 6478–6490 (2021)

    Google Scholar 

  13. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: ITCS, pp. 214–226 (2012). https://doi.org/10.1145/2090236.2090255

  14. Fleischman, H.L., Hopstock, P.J., Pelczar, M.P., Shelley, B.E.: Highlights from pisa 2009: Performance of us 15-year-old students in reading, mathematics, and science literacy in an international context, nces 2011–004. National Center for Education Statistics (2010)

    Google Scholar 

  15. Foster, I., Ghani, R., Jarmin, R.S., Kreuter, F., Lane, J.: Big data and social science: a practical guide to methods and tools. CRC Press (2016)

    Google Scholar 

  16. Francis, B.K., Babu, S.S.: Predicting academic performance of students using a hybrid data mining approach. J. Med. Syst. 43(6), 1–15 (2019). https://doi.org/10.1007/s10916-019-1295-4

    Article  Google Scholar 

  17. Gardner, J., Brooks, C., Baker, R.: Evaluating the fairness of predictive student models through slicing analysis. In: LAK19, pp. 225–234 (2019). https://doi.org/10.1145/3303772.3303791

  18. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in neural information processing systems 29 (2016)

    Google Scholar 

  19. Hussain, S., Dahan, N.A., Ba-Alwib, F.M., Ribata, N.: Educational data mining and analysis of students’ academic performance using weka. Indonesian J. Electr. Eng. Comput. Sci. 9(2), 447–459 (2018)

    Article  Google Scholar 

  20. Hutchinson, B., Mitchell, M.: 50 years of test (un) fairness: lessons for machine learning. In: FAT, pp. 49–58 (2019). https://doi.org/10.1145/3287560.3287600

  21. Iosifidis, V., Ntoutsi, E.: AdaFair: Cumulative fairness adaptive boosting. In: CIKM, pp. 781–790 (2019). https://doi.org/10.1145/3357384.3357974

  22. Jiang, W., Pardos, Z.A.: Towards equity and algorithmic fairness in student grade prediction. In: AIES, pp. 608–617. ACM (2021). https://doi.org/10.1145/3461702.3462623

  23. Jiang, W., Pardos, Z.A.: Towards equity and algorithmic fairness in student grade prediction. In: AIES, pp. 608–617 (2021). https://doi.org/10.1145/3461702.3462623

  24. Khan, A., Ghosh, S.K.: Student performance analysis and prediction in classroom learning: a review of educational data mining studies. Educ. Inf. Technol. 26(1), 205–240 (2021). https://doi.org/10.1007/s10639-020-10230-3

    Article  Google Scholar 

  25. Khan, N.A.U., Khan, I.U., Alamri, L.H., Almuslim, R.S.: An improved early student’s academic performance prediction using deep learning. Int. J. Emerg. Technol. Learn. (iJET) 16(12), 108–122 (2021)

    Google Scholar 

  26. Kuzilek, J., Hlosta, M., Zdrahal, Z.: Open university learning analytics dataset. Scient. data 4(1), 1–8 (2017). https://doi.org/10.1038/sdata.2017.171

    Article  Google Scholar 

  27. Le Quy, T., Roy, A., Vasileios, I., Wenbin, Z., Ntoutsi, E.: A survey on datasets for fairness-aware machine learning. WIREs Data Mining Knowl. Disc. 12(3), e1452 (2022). https://doi.org/10.1002/widm.1452

  28. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021). https://doi.org/10.1145/3457607

    Article  Google Scholar 

  29. Meyer, K.: Education, justice and the human good: fairness and equality in the education system. Routledge (2014)

    Google Scholar 

  30. Mihaescu, M.C., Popescu, P.S.: Review on publicly available datasets for educational data mining. Wiley Interdisc. Rev. Data Mining Knowl. Discovery 11(3), e1403 (2021). https://doi.org/10.1002/widm.1403

    Article  Google Scholar 

  31. Namoun, A., Alshanqiti, A.: Predicting student performance using data mining and learning analytics techniques: a systematic literature review. Appl. Sci. 11(1), 237 (2020). https://doi.org/10.3390/app11010237

    Article  Google Scholar 

  32. Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M.E., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., et al.: Bias in data-driven artificial intelligence systems-an introductory survey. Wiley Interdisc. Rev. Data Mining Knowl. Discovery 10(3), e1356 (2020). https://doi.org/10.1002/widm.1356

    Article  Google Scholar 

  33. Saleem, F., Ullah, Z., Fakieh, B., Kateb, F.: Intelligent decision support system for predicting student’s e-learning performance using ensemble machine learning. Mathematics 9(17), 2078 (2021). https://doi.org/10.3390/math9172078

    Article  Google Scholar 

  34. Shahiri, A.M., Husain, W., et al.: A review on predicting student’s performance using data mining techniques. Procedia Computer Science 72, 414–422 (2015)

    Article  Google Scholar 

  35. Simoiu, C., Corbett-Davies, S., Goel, S.: The problem of infra-marginality in outcome tests for discrimination. Annals Appl. Statist. 11(3), 1193–1216 (2017). https://doi.org/10.1214/17-AOAS1058

    Article  MATH  Google Scholar 

  36. Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), pp. 1–7 (2018). https://doi.org/10.23919/FAIRWARE.2018.8452913

  37. Wightman, L.F.: LSAC national longitudinal bar passage study. LSAC Research Report Series (1998)

    Google Scholar 

  38. Xiao, W., Ji, P., Hu, J.: A survey on educational data mining methods used for predicting students’ performance. Eng. Reports 4(5), e12482 (2022). https://doi.org/10.1002/eng2.12482

    Article  Google Scholar 

  39. Yu, R., Li, Q., Fischer, C., Doroudi, S., Xu, D.: Towards accurate and fair prediction of college success: evaluating different sources of student data. In: EDM (2020)

    Google Scholar 

  40. Žliobaitė, I.: On the relation between accuracy and fairness in binary classification. In: FAT/ML 2015 workshop at ICML, vol. 15 (2015)

    Google Scholar 

  41. Zohair, A., Mahmoud, L.: Prediction of student’s performance by modelling small dataset size. Int. J. Educ. Technol. High. Educ. 16(1), 1–18 (2019). https://doi.org/10.1186/s41239-019-0160-3

    Article  Google Scholar 

Download references

Acknowledgments

The work of the first author is supported by the Ministry of Science and Culture of Lower Saxony, Germany, within the Ph.D. program “LernMINT: Data-assisted teaching in the MINT subjects”. The work of the second author is funded by the German Research Foundation (DFG Grant NI-1760/1-1), project “Managed Forgetting”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Le Quy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Quy, T., Nguyen, T.H., Friege, G., Ntoutsi, E. (2023). Evaluation of Group Fairness Measures in Student Performance Prediction Problems. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23618-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23617-4

  • Online ISBN: 978-3-031-23618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics