Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

curr2vib: Modality Embedding Translation for Broken-Rotor Bar Detection

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Recently and due to the advances in sensor technology and Internet-of-Things, the operation of machinery can be monitored, using a higher number of sources and modalities. In this study, we demonstrate that Multi-Modal Translation is capable of transferring knowledge from a modality with higher level of applicability (more usefulness to solve an specific task) but lower level of accessibility (how easy and affordable it is to collect information from this modality) to another one with higher level of accessibility but lower level of applicability. Unlike the fusion of multiple modalities which requires all of the modalities to be available during the deployment stage, our proposed method depends only on the more accessible one; which results in the reduction of the costs regarding instrumentation equipment. The presented case study demonstrates that by the employment of the proposed method we are capable of replacing five acceleration sensors with three current sensors, while the classification accuracy is also increased by more than 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cka-similarity.github.io/.

References

  1. Al-Dulaimi, A., Zabihi, S., Asif, A., Mohammadi, A.: A multimodal and hybrid deep neural network model for remaining useful life estimation. Comput. Ind. 108, 186–196 (2019)

    Article  Google Scholar 

  2. Beleiu, H.G., Maier, V., Pavel, S.G., Birou, I., Pică, C.S., Dărab, P.C.: Harmonics consequences on drive systems with induction motor. Appl. Sci. 10(4), 1528 (2020)

    Article  Google Scholar 

  3. Camarena-Martinez, D., Valtierra-Rodriguez, M., Garcia-Perez, A., Osornio-Rios, R.A., Romero-Troncoso, R.d.J.: Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors. Sci. World J. 2014(1971), 908140 (2014)

    Google Scholar 

  4. Csiszárik, A., Kőrösi-Szabó, P., Matszangosz, Á., Papp, G., Varga, D.: Similarity and matching of neural network representations. Adv. Neural. Inf. Process. Syst. 34, 5656–5668 (2021)

    Google Scholar 

  5. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  6. Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005). https://doi.org/10.1007/11564089_7

    Chapter  Google Scholar 

  7. Gritli, Y., Di Tommaso, A., Filippetti, F., Miceli, R., Rossi, C., Chatti, A.: Investigation of motor current signature and vibration analysis for diagnosing rotor broken bars in double cage induction motors. In: International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, pp. 1360–1365. IEEE (2012)

    Google Scholar 

  8. Hossain, M.Z., Sohel, F., Shiratuddin, M.F., Laga, H.: A comprehensive survey of deep learning for image captioning. ACM Compu. Surv. 51(6), 1–36 (2019)

    Article  Google Scholar 

  9. Kanović, Ž., Matić, D., Jeličić, Z., Rapaić, M., Jakovljević, B., Kapetina, M.: Induction motor broken rotor bar detection using vibration analysis-a case study. In: 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), pp. 64–68. IEEE (2013)

    Google Scholar 

  10. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  11. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: International Conference on Machine Learning, pp. 3519–3529. PMLR (2019)

    Google Scholar 

  12. Le-Khac, P.H., Healy, G., Smeaton, A.F.: Contrastive representation learning: a framework and review. IEEE Access 8, 193907–193934 (2020). https://doi.org/10.1109/ACCESS.2020.3031549

    Article  Google Scholar 

  13. Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., Nandi, A.K.: Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech. Syst. Signal Process. 138, 106587 (2020)

    Article  Google Scholar 

  14. Lizarraga-Morales, R.A., Rodriguez-Donate, C., Cabal-Yepez, E., Lopez-Ramirez, M., Ledesma-Carrillo, L.M., Ferrucho-Alvarez, E.R.: Novel FPGA-based methodology for early broken rotor bar detection and classification through homogeneity estimation. IEEE Trans. Instrum. Meas. 66(7), 1760–1769 (2017)

    Article  Google Scholar 

  15. Luo, F., Yang, P., Li, S., Ren, X., Sun, X.: CAPT: contrastive pre-training for learning denoised sequence representations. arXiv preprint arXiv:2010.06351 (2020)

  16. Ma, M., Sun, C., Chen, X.: Deep coupling autoencoder for fault diagnosis with multimodal sensory data. IEEE Trans. Industr. Inf. 14(3), 1137–1145 (2018)

    Article  Google Scholar 

  17. Morales-Perez, C., Rangel-Magdaleno, J., Peregrina-Barreto, H., Amezquita-Sanchez, J.P., Valtierra-Rodriguez, M.: Incipient broken rotor bar detection in induction motors using vibration signals and the orthogonal matching pursuit algorithm. IEEE Trans. Instrum. Meas. 67(9), 2058–2068 (2018)

    Article  Google Scholar 

  18. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: Systems, purposes and approaches. arXiv preprint arXiv:1912.07383 (2019)

  19. Rangel-Magdaleno, J., Peregrina-Barreto, H., Ramirez-Cortes, J., Morales-Caporal, R., Cruz-Vega, I.: Vibration analysis of partially damaged rotor bar in induction motor under different load condition using dwt. Shock Vibrat. 2016, 3530464 (2016)

    Google Scholar 

  20. Sadeghian, A., Ye, Z., Wu, B.: Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks. IEEE Trans. Instrum. Meas. 58(7), 2253–2263 (2009)

    Article  Google Scholar 

  21. Spyropoulos, D., Mitronikas, E., Dermatas, E.: Broken rotor bar fault diagnosis in induction motors using a goertzel algorithm. In: 2018 XIII International Conference on Electrical Machines (ICEM), pp. 1782–1788. IEEE (2018)

    Google Scholar 

  22. Summaira, J., Li, X., Shoib, A.M., Abdul, J.: A review on methods and applications in multimodal deep learning. arXiv preprint arXiv:2202.09195 (2022)

  23. Taghiyarrenani, Z., Berenji, A.: An analysis of vibrations and currents for broken rotor bar detection in three-phase induction motors. In: PHM Society European Conference, vol. 7, pp. 43–48 (2022)

    Google Scholar 

  24. Treml, A.E., Flauzino, R.A., Suetake, M., Maciejewski, N.A.R.: Experimental database for detecting and diagnosing rotor broken bar in a three-phase induction motor. In; IEEE DataPort (2020)

    Google Scholar 

  25. Wang, J., Wang, D., Wang, X.: Fault diagnosis of industrial robots based on multi-sensor information fusion and 1d convolutional neural network. In: 2020 39th Chinese Control Conference (CCC), pp. 3087–3091. IEEE (2020)

    Google Scholar 

  26. Wang, Z., et al.: CLEVE: contrastive pre-training for event extraction. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6283–6297. Association for Computational Linguistics, August 2021. https://doi.org/10.18653/v1/2021.acl-long.491, https://aclanthology.org/2021.acl-long.491

  27. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: 30th Proceedings of the Conference on Advances in Neural Information Processing Systems (2017)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Vinnova and by CHIST-ERA grant CHIST-ERA-19-XAI-012 funded by Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Berenji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berenji, A., Taghiyarrenani, Z., Nowaczyk, S. (2023). curr2vib: Modality Embedding Translation for Broken-Rotor Bar Detection. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23633-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23632-7

  • Online ISBN: 978-3-031-23633-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics