Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Contrastive Learning of Emoji-Based Representations for Resource-Poor Languages

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13397))

  • 297 Accesses

Abstract

The introduction of emojis (or emoticons) in social media platforms has given the users an increased potential for expression. We propose a novel method called Classification of Emojis using Siamese Network Architecture (CESNA) to learn emoji-based representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network.

CESNA model consists of twin Bi-directional Long Short-Term Memory Recurrent Neural Networks (Bi-LSTM RNN) with shared parameters joined by a contrastive loss function based on a similarity metric. The model learns the representations of resource-poor and resource-rich language in a common emoji space by using a similarity metric based on the emojis present in sentences from both languages. The model, hence, projects sentences with similar emojis closer to each other and the sentences with different emojis farther from one another. Experiments on large-scale Twitter datasets of resource-rich languages - English and Spanish and resource-poor languages - Hindi and Telugu reveal that CESNA outperforms the state-of-the-art emoji prediction approaches based on distributional semantics, semantic rules, lexicon lists and deep neural network representations without shared parameters.

N. Choudhary and R. Singh–These authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Many Tongues of Twitter - MIT Technology Review.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Balamurali, A., Joshi, A., Bhattacharyya, P.: Cross-lingual sentiment analysis for indian languages using linked wordnets. In: Proceedings of COLING 2012: Posters, pp. 73–82 (2012)

    Google Scholar 

  3. Barbieri, F., Ballesteros, M., Saggion, H.: Are emojis predictable? arXiv preprint arXiv:1702.07285 (2017)

  4. Boden, M.: A guide to recurrent neural networks and backpropagation. the Dallas project (2002)

    Google Scholar 

  5. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a" siamese" time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  6. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  8. Das, A., Yenala, H., Chinnakotla, M., Shrivastava, M.: Together we stand: Siamese networks for similar question retrieval. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). vol. 1, pp. 378–387 (2016)

    Google Scholar 

  9. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2vec: Character-based distributed representations for social media. arXiv preprint arXiv:1605.03481 (2016)

  10. Ding, S., Cong, G., Lin, C.Y., Zhu, X.: Using conditional random fields to extract contexts and answers of questions from online forums. In: ACL. vol. 8, pp. 710–718 (2008)

    Google Scholar 

  11. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075 (2015)

  12. Joshi, A., Balamurali, A., Bhattacharyya, P.: A fall-back strategy for sentiment analysis in hindi: a case study. In: Proceedings of the 8th ICON (2010)

    Google Scholar 

  13. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  14. LeCun, Y., Huang, F.J.: Loss functions for discriminative training of energy-based models. In: AIStats (2005)

    Google Scholar 

  15. Liu, Y., Li, S., Cao, Y., Lin, C.Y., Han, D., Yu, Y.: Understanding and summarizing answers in community-based question answering services. In: Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1, pp. 497–504. Association for Computational Linguistics (2008)

    Google Scholar 

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp. 3111–3119 (2013)

    Google Scholar 

  17. Mukku, S.S., Choudhary, N., Mamidi, R.: Enhanced sentiment classification of telugu text using ml techniques. In: SAAIP@ IJCAI. pp. 29–34 (2016)

    Google Scholar 

  18. Mukku, Sandeep Sricharan, Oota, Subba Reddy, Mamidi, Radhika: Tag me a label with multi-arm: active learning for Telugu sentiment analysis. In: Bellatreche, Ladjel, Chakravarthy, Sharma (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 355–367. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_26

    Chapter  Google Scholar 

  19. Sarkar, Kamal, Chakraborty, Saikat: A sentiment analysis system for indian language tweets. In: Prasath, Rajendra, Vuppala, Anil Kumar, Kathirvalavakumar, T.. (eds.) MIKE 2015. LNCS (LNAI), vol. 9468, pp. 694–702. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26832-3_66

    Chapter  Google Scholar 

  20. Taggart, C.: New Words for Old: Recycling Our Language for the Modern World. Michael O’Mara Books (2015)

    Google Scholar 

  21. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language. In: Advances in Neural Information Processing Systems, pp. 2773–2781 (2015)

    Google Scholar 

  22. Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: Learning distributed word representations for bidirectional lstm recurrent neural network. In: HLT-NAACL, pp. 527–533 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurendra Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhary, N., Singh, R., Bindlish, I., Shrivastava, M. (2023). Contrastive Learning of Emoji-Based Representations for Resource-Poor Languages. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2018. Lecture Notes in Computer Science, vol 13397. Springer, Cham. https://doi.org/10.1007/978-3-031-23804-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23804-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23803-1

  • Online ISBN: 978-3-031-23804-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics