Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Purpose Scan: A Purpose-Aware Access Method

  • Conference paper
  • First Online:
Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2022, Poly 2022)

Abstract

In this paper, we attack the problem of querying personal data according to related purposes. Our approach allows for specifying, in a SQL manner, the purpose of use to personal data. We define a new access method operator introduced in query plans to automatically enforce the purposes of data involved in a SQL query. Experimental results show that our method outperforms a view-based approach competitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S., Rjaibi, W.: Extending relational database systems to automatically enforce privacy policies. In: ICDE, pp. 1013–1022. IEEE Computer Society, Tokyo (2005)

    Google Scholar 

  2. Byun, J., Li, N.: Purpose based access control for privacy protection in relational database systems. VLDB J. 17(4), 603–619 (2008)

    Article  Google Scholar 

  3. de Castro Machado, J., Amora, P.R.P.: How can DB systems be ready for privacy regulations. In: SBBD, pp. 235–240. SBC (2020)

    Google Scholar 

  4. CCPA: California Consumer Privacy Act. https://oag.ca.gov/privacy/ccpa (2018). Accessed 07 Oct 2021

  5. Cohn-Gordon, K., et al.: DELF: safeguarding deletion correctness in online social networks. In: Capkun, S., Roesner, F. (eds.) 29th USENIX Security Symposium, USENIX Security 2020, 12–14 August 2020, pp. 1057–1074. USENIX Association (2020)

    Google Scholar 

  6. Deeds, K., Hentschel, B., Idreos, S.: Stacked filters: learning to filter by structure. Proc. VLDB Endow. 14(4), 600–612 (2021)

    Article  Google Scholar 

  7. Deshpande, A.: Sypse: privacy-first data management through pseudonymization and partitioning. In: CIDR, pp. 1–8 (2021). https://www.cidrdb.org/

  8. Difallah, D.E., Pavlo, A., Curino, C., Cudré-Mauroux, P.: Oltp-bench: an extensible testbed for benchmarking relational databases. PVLDB 7(4), 277–288 (2013). http://www.vldb.org/pvldb/vol7/p277-difallah.pdf

  9. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 3rd edn. Addison-Wesley-Longman, Cambridge (2000)

    MATH  Google Scholar 

  10. Regulation, G.D.P.: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46. Off. J. Eur. Union 59, 1–88 (2016)

    Google Scholar 

  11. Graefe, G.: Volcano - an extensible and parallel query evaluation system. IEEE Trans. Knowl. Data Eng. 6(1), 120–135 (1994)

    Article  Google Scholar 

  12. Kraska, T., Stonebraker, M., Brodie, M., Servan-Schreiber, S., Weitzner, D.: SchengenDB: a data protection database proposal. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 24–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0_2

    Chapter  Google Scholar 

  13. Lehmann, A.: Scrambledb: oblivious (chameleon) pseudonymization-as-a-service. Proc. Priv. Enhancing Technol. 2019(3), 289–309 (2019)

    Article  Google Scholar 

  14. LGPD: Lei Geral de Proteção de Dados (2018). http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709compilado.htm. Accessed 07 Oct 2021

  15. Pappachan, P., Yus, R., Mehrotra, S., Freytag, J.: Sieve: a middleware approach to scalable access control for database management systems. Proc. VLDB Endow. 13(11), 2424–2437 (2020)

    Article  Google Scholar 

  16. Pun, S.: Prisql: a privacy preserving sql language (2010), https://prism.ucalgary.ca/handle/1880/104364

  17. Rizvi, S., Mendelzon, A.O., Sudarshan, S., Roy, P.: Extending query rewriting techniques for fine-grained access control. In: SIGMOD Conference, pp. 551–562. ACM, France (2004)

    Google Scholar 

  18. Rogers, J., Bater, J., He, X., Machanavajjhala, A., Suresh, M., Wang, X.: Privacy changes everything. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 96–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0_7

    Chapter  Google Scholar 

  19. Schwarzkopf, M., Kohler, E., Frans Kaashoek, M., Morris, R.: Position: GDPR compliance by construction. In: Gadepally, V., et al. (eds.) DMAH/Poly -2019. LNCS, vol. 11721, pp. 39–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0_3

    Chapter  Google Scholar 

  20. Shastri, S., Banakar, V., Wasserman, M., Kumar, A., Chidambaram, V.: Understanding and benchmarking the impact of GDPR on database systems. Proc. VLDB Endow. 13(7), 1064–1077 (2020)

    Article  Google Scholar 

  21. Spenger, J., Carbone, P., Haller, P.: Wip: pods: privacy compliant scalable decentralized data services. PVLDB 12921(1), 70–82 (2021)

    Google Scholar 

  22. Tsai, L., Schwarzkopf, M., Kohler, E.: Privacy heroes need data disguises. In: Proceedings of the Workshop on Hot Topics in Operating Systems, pp. 112–118. Association for Computing Machinery, Michigan (2021)

    Google Scholar 

  23. Wang, L., et al.: Data capsule: a new paradigm for automatic compliance with data privacy regulations, pp. 3–23. CoRR abs/1909.00077 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by CAPES (grant 88887.609129/2021) and LSBD/UFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. P. Amora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Praciano, F.D.B.S., Amora, P.R.P., Abreu, Í.C., Machado, J.C. (2022). Purpose Scan: A Purpose-Aware Access Method. In: Rezig, E.K., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2022 2022. Lecture Notes in Computer Science, vol 13814. Springer, Cham. https://doi.org/10.1007/978-3-031-23905-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23905-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23904-5

  • Online ISBN: 978-3-031-23905-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics