Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Assessing Data Bias in Clinical Trials

  • Conference paper
  • First Online:
Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2022, Poly 2022)

Abstract

Algorithms and technologies are essential tools that pervade all aspects of our daily lives. In the last decades, health care research benefited from new computer-based recruiting methods, the use of federated architectures for data storage, the introduction of innovative analyses of datasets, and so on. Nevertheless, health care datasets can still be affected by data bias. Due to data bias, they provide a distorted view of reality, leading to wrong analysis results and, consequently, decisions. For example, in a clinical trial that studied the risk of cardiovascular diseases, predictions were wrong due to the lack of data on ethnic minorities. It is, therefore, of paramount importance for researchers to acknowledge data bias that may be present in the datasets they use, eventually adopt techniques to mitigate them and control if and how analyses results are impacted.

This paper proposes a method to address bias in datasets that: (i) defines the types of data bias that may be present in the dataset, (ii) characterizes and quantifies data bias with adequate metrics, (iii) provides guidelines to identify, measure, and mitigate data bias for different data sources. The method we propose is applicable both for prospective and retrospective clinical trials. We evaluate our proposal both through theoretical considerations and through interviews with researchers in the health care environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adebayo, J.A., et al.: FairML: toolbox for diagnosing bias in predictive modeling. Ph.D. thesis, Massachusetts Institute of Technology (2016)

    Google Scholar 

  2. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. In: Ethics of Data and Analytics, pp. 254–264. Auerbach Publications (2016)

    Google Scholar 

  3. Asudeh, A., Jin, Z., Jagadish, H.: Assessing and remedying coverage for a given dataset. In: 2019 IEEE 35th International Conference on Data Engineering, pp. 554–565. IEEE (2019)

    Google Scholar 

  4. Asudeh, A., Shahbazi, N., Jin, Z., Jagadish, H.: Identifying insufficient data coverage for ordinal continuous-valued attributes. In: Proceedings of International Conference on Management of Data, pp. 129–141 (2021)

    Google Scholar 

  5. Balayn, A., Lofi, C., Houben, G.-J.: Managing bias and unfairness in data for decision support: a survey of machine learning and data engineering approaches to identify and mitigate bias and unfairness within data management and analytics systems. VLDB J. 30(5), 739–768 (2021). https://doi.org/10.1007/s00778-021-00671-8

    Article  Google Scholar 

  6. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality assessment and improvement. ACM Comput. Surv. 41(3), 1–52 (2009)

    Article  Google Scholar 

  7. Batini, C., Scannapieco, M.: Data and Information Quality. DSA, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24106-7

    Book  MATH  Google Scholar 

  8. Beam, A.L., Kohane, I.S.: Big data and machine learning in health care. Jama 319(13), 1317–1318 (2018)

    Article  Google Scholar 

  9. Bellamy, R.K., et al.: Ai fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM J. Res. Dev. 63(4/5), 1–4 (2019)

    Google Scholar 

  10. Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care—addressing ethical challenges. N. Engl. J. Med. 378(11), 981 (2018)

    Google Scholar 

  11. Cohen, I.G., Amarasingham, R., Shah, A., Xie, B., Lo, B.: The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Affairs 33(7), 1139–1147 (2014)

    Article  Google Scholar 

  12. Drosou, M., Jagadish, H.V., Pitoura, E., Stoyanovich, J.: Diversity in big data: a review. Big Data 5(2), 73–84 (2017)

    Article  Google Scholar 

  13. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Google Scholar 

  14. Gerhard, T.: Bias: considerations for research practice. Am. J. Health Syst. Pharm. 65(22), 2159–2168 (2008)

    Article  Google Scholar 

  15. Grote, T., Berens, P.: On the ethics of algorithmic decision-making in healthcare. J. Med. Ethics 46(3), 205–211 (2020)

    Article  Google Scholar 

  16. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  17. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., MĂĽller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(4), e1312 (2019)

    Google Scholar 

  18. Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.M., Palade, V.: A glass-box interactive machine learning approach for solving np-hard problems with the human-in-the-loop. arXiv preprint arXiv:1708.01104 (2017)

  19. Ibrahim, J.G., Chen, M.H., Lipsitz, S.R., Herring, A.H.: Missing-data methods for generalized linear models: a comparative review. J. Am. Stat. Assoc. 100(469), 332–346 (2005)

    Article  MATH  Google Scholar 

  20. Ibrahim, J.G., Chu, H., Chen, M.H.: Missing data in clinical studies: issues and methods. J. Clin. Oncol. 30(26), 3297 (2012)

    Google Scholar 

  21. Knoppers, B.M.: International ethics harmonization and the global alliance for genomics and health. Genome Med. 6(2), 1–3 (2014)

    Article  Google Scholar 

  22. Krause, J., et al.: Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8), 1264–1272 (2018)

    Article  Google Scholar 

  23. Lambrecht, A., Tucker, C.: Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of stem career ads. Manag. Sci. 65(7), 2966–2981 (2019)

    Article  Google Scholar 

  24. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. John Wiley & Sons, Hoboken (2019)

    Google Scholar 

  25. Manrai, A.K., et al.: Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375(7), 655–665 (2016)

    Article  Google Scholar 

  26. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)

    Article  Google Scholar 

  27. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information sources. Inf. Syst. 29(7), 583–615 (2004)

    Article  Google Scholar 

  28. van Ommen, G.J.B., et al.: BBMRI-ERIC as a resource for pharmaceutical and life science industries: the development of biobank-based expert centres. Eur. J. Hum. Genetics 23(7), 893–900 (2015)

    Article  Google Scholar 

  29. Papakyriakopoulos, O., Mboya, A.M.: Beyond algorithmic bias: a socio-computational interrogation of the google search by image algorithm. Soc. Sci. Comput. Rev. (2021). https://doi.org/10.1177/08944393211073169

  30. Pitoura, E.: Social-minded measures of data quality: fairness, diversity, and lack of bias. J. Data Inf. Qual. 12(3), 1–8 (2020)

    Article  Google Scholar 

  31. Rajkomar, A., Hardt, M., Howell, M.D., Corrado, G., Chin, M.H.: Ensuring fairness in machine learning to advance health equity. Ann. Internal Med. 169(12), 866–872 (2018)

    Article  Google Scholar 

  32. Saxena, N.A., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D.C., Liu, Y.: How do fairness definitions fare? Testing public attitudes towards three algorithmic definitions of fairness in loan allocations. Artif. Intell. 283, 103238 (2020)

    Google Scholar 

  33. Stoyanovich, J., Abiteboul, S., Miklau, G.: Data, responsibly: fairness, neutrality and transparency in data analysis. In: International Conference on Extending Database Technology (2016)

    Google Scholar 

  34. Stoyanovich, J., Howe, B.: Nutritional labels for data and models. IEEE Data Eng. Bull. 42(3), 13–23 (2019)

    Google Scholar 

  35. Tillin, T., et al.: Ethnicity and prediction of cardiovascular disease: performance of qrisk2 and Framingham scores in a UK tri-ethnic prospective cohort study (sabre—southall and brent revisited). Heart 100(1), 60–67 (2014)

    Google Scholar 

  36. Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44–56 (2019)

    Article  Google Scholar 

  37. Tramer, F., et al.: Fairtest: discovering unwarranted associations in data-driven applications. In: IEEE European Symposium on Security and Privacy, pp. 401–416 (2017)

    Google Scholar 

  38. Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM International Workshop on Software Fairness (fairware), pp. 1–7 (2018)

    Google Scholar 

  39. Wapner, J.: Cancer scientists have ignored African DNA in the search for cures. Newsweek Magazine (July 2018). https://www.newsweek.com/2018/07/27/cancer-cure-genome-cancer-treatment-africa-genetic-charles-rotimi-dna-human-1024630.html. Accessed 23 June 2022

  40. Zaki, M.J., Meira Jr, W.: Data Mining and Machine Learning: Fundamental Concepts and Algorithms. Cambridge University Press, Cambridge (2020)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the Health Big Data Project (CCR-2018-23669122), funded by the Italian Ministry of Economy and Finance and coordinated by the Italian Ministry of Health and the network Alleanza Contro il Cancro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Criscuolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Criscuolo, C., Dolci, T., Salnitri, M. (2022). Towards Assessing Data Bias in Clinical Trials. In: Rezig, E.K., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2022 2022. Lecture Notes in Computer Science, vol 13814. Springer, Cham. https://doi.org/10.1007/978-3-031-23905-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23905-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23904-5

  • Online ISBN: 978-3-031-23905-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics