Abstract
The pebbling comonad introduced in (Abramsky, Dawar, Wang 2017) gives a categorical account relating natural approximations of homomorphism and isomorphism. On the one hand we have the local consistency algorithms that approximate homomorphism and on the other the Weisfeiler–Leman algorithms that approximate isomorphism. Both of these have elegant characterizations as pebble games. In this paper we give a brief tour through the background that led to the definition of the pebbling comonad and look at some prospects it offers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Here, \(\wp (X)\) denotes the powerset of X.
References
Abramsky, S., Dawar, A., & Wang, P. (2017). The pebbling comonad in finite model theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12).
Abramsky, S., & Tzevelekos, N. (2010). Introduction to categories and categorical logic. In New structures for physics (pp. 3–94). Springer.
Atserias, A., Bulatov, A., & Dawar, A. (2009). Affine systems of equations and counting infinitary logic. Theoretical Computer Science, 410(18), 1666–1683.
Atserias, A., Dawar, A., & Kolaitis, P. G. (2006). On preservation under homomorphisms and unions of conjunctive queries. Journal of the ACM, 53, 208–237.
Babai, L. (2016). Graph isomorphism in quasipolynomial time [extended abstract]. In Proceeding of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC (pp. 684–697).
Babai, L., Erdős, P., & Selkow, S. M. (1980). Random graph isomorphism. SIAM Journal on Computing, 9, 628–635.
Babai, L., Grigoryev, D. Yu., & Mount, D. M. (1982). Isomorphism of graphs with bounded eigenvalue multiplicity. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC) (pp. 310–324).
Babai, L., & Luks, E. M. (1983). Canonical labeling of graphs. In Proceedings of the 15th ACM Symposium on the Theory of Computing (pp. 171–183).
Barto, L., & Kozik, M. (2014). Constraint satisfaction problems solvable by local consistency methods. Journal of the ACM, 61.
Barwise, J. (1977). On Moschovakis closure ordinals. Journal of Symbolic Logic, 42, 292–296.
Bodlaender, H. L. (1990). Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms, 11, 631–643.
Bulatov, A. A. (2017). A dichotomy theorem for nonuniform csps. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS (pp. 319–330).
Bulatov, A. A., & Dalmau, V. (2006). A simple algorithm for mal’tsev constraints. SIAM Journal on Computing, 36, 16–27.
Bulatov, A. A., Grohe, M., Kolaitis, P. G., & Krokhin, A. A. (Eds.), (2009). The constraint satisfaction problem: Complexity and approximability. In Dagstuhl Seminar Proceedings (Vol. 09441)
Bulatov, A. A., Jeavons, P., & Krokhin, A. A. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34(3), 720–742.
Bulatov, A. A. Krokhin, A. A., & Larose, B. (2008). Dualities for constraint satisfaction problems. In Complexity of Constraints - An Overview of Current Research Themes (pp. 93–124).
Cai, J.-Y., Fürer, M., & Immerman, N. (1992). An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4), 389–410.
Chandra, A., & Harel, D. (1982). Structure and complexity of relational queries. Journal of Computer and System Sciences, 25, 99–128.
Dalmau, V., Kolaitis, Ph. G., & Vardi, M. Y. (2002). Constraint satisfaction, bounded treewidth, and finite-variable logics. In International Conference on Principles and Practice of Constraint Programming (pp. 310–326). Springer.
Dawar, A. (1993). Feasible computation through model theory. Ph.D thesis, University of Pennsylvania.
Dawar, A., & Kreutzer, S. (2008). On Datalog vs. LFP. In International Colloquium on Automata, Languages, and Programming (ICALP) (pp. 160–171). Springer.
Dawar, A., Lindell, S., & Weinstein, S. (1995). Infinitary logic and inductive definability over finite structures. Information and Computation, 119(2), 160–175.
Dawar, A., & Wang, P. (2015). A definability dichotomy for finite valued CSPs. In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015 (pp. 60–77).
Ebbinghaus, H.-D., & Flum, J. (1999). Finite model theory (2nd ed.). Berlin: Springer.
Enderton, H. B. (1972). A mathematical introduction to logic. Cambridge: Academic.
Evdokimov, S., & Ponomarenko, I. (1999). On highly closed cellular algebras and highly closed isomorphisms. Electronic Journal of Combinatorics, 6(1), Research paper 18, 31 pages.
Fagin, R. (1974). Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp (Ed.), Complexity of Computation, SIAM-AMS Proceedings (Vol. 7, pp. 43–73).
Feder, T., & Vardi, M. Y. (1998). Computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing, 28, 57–104.
Feder, T., & Vardi, M. Y. (2003). Homomorphism closed vs existential positive. In Proceedings of the 18th IEEE Symposium on Logic in Computer Science (pp. 311–320).
Filotti, I. S., & Mayer, J. N. (1980). A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus (working paper). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC) (pp. 236–243).
Furst, M. L., Hopcroft, J. E., & Luks, E. M. (1980). Polynomial-time algorithms for permutation groups. In 21st Annual Symposium on Foundations of Computer Science (FOCS) (pp. 36–41).
Grohe, M., & Mariño, J. (1999). Definability and descriptive complexity on databases of bounded tree-width. In Proceedings of the 7th International Conference on Database Theory. LNCS (Vol. 1540, pp. 70–82). Springer.
Grohe, M., & Marx, D. (2015). Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM Journal on Computing, 44, 114–159.
Grohe, M., & Otto, M. (2015). Pebble games and linear equations. The Journal of Symbolic Logic, 80, 797–844.
Grohe, M. (2017). Descriptive complexity, canonisation, and definable graph structure theory. Lecture notes in logic (Vol. 47). Cambridge: Cambridge University Press.
Gurevich, Y. (1988). Logic and the challenge of computer science. In E. Börger (Ed.), Current trends in theoretical computer science (pp. 1–57). Computer Science Press.
Hella, L. (1996). Logical hierarchies in PTIME. Information and Computation, 129, 1–19.
Holm, B. (2010). Descriptive complexity of linear algebra. Ph.D thesis, University of Cambridge.
Idziak, P. M., Markovic, P., McKenzie, R., Valeriote, M., & Willard, R. (2010). Tractability and learnability arising from algebras with few subpowers. SIAM Journal on Computing, 39, 3023–3037.
Immerman, N. (1986). Relational queries computable in polynomial time. Information and Control, 68, 86–104.
Immerman, N., & Lander, E. S. (1990). Describing graphs: A first-order approach to graph canonization. In A. Selman (Ed.), Complexity theory retrospective. Berlin: Springer.
Kolaitis, P. G., & Vardi, M. Y. (1992). Infinitary logics and 0–1 laws. Information and Computation, 98(2), 258–294.
Kolaitis, P. G., & Vardi, M. Y. (1995). On the expressive power of Datalog: Tools and a case study. Journal of Computer and System Sciences, 51, 110–134.
Kolaitis, Ph. G., & Vardi, M. Y. (2008). A logical approach to constraint satisfaction. In Complexity of constraints - An overview of current research themes (pp. 125–155).
Krokhin, A. A., & Zivný, S. (Eds.) (2017). The constraint satisfaction problem: Complexity and approximability. Dagstuhl Follow-Ups (Vol. 7). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
van Leeuwen, J. (Ed.) (1990). Handbook of theoretical computer science. MIT Press.
Libkin, L. (2004). Elements of finite model theory. Berlin: Springer.
Livchak, A. (1983). The relational model for process control. Automated Documentation and Mathematical Linguistics, 4, 27–29.
Luks, E. M. (1982). Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences, 25, 42–65.
Lyndon, R. C. (1959). An interpolation theorem in the predicate calculus. Pacific Journal of Mathematics, 9, 129–42.
Otto, M. (1997). Bounded variable logics and counting—A study in finite models. Lecture notes in logic (Vol. 9). Berlin: Springer.
Poizat, B. (1982). Deux ou trois choses que je sais de \({L}_n\). Journal of Symbolic Logic, 47(3), 641–658.
Ponomarenko, I. (1988). The isomorphism problem for classes of graphs that are invariant with respect to contraction (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 174, 147–177.
Ramana, M. V., Scheinerman, E. R., & Ullman, D. (1994). Fractional isomorphism of graphs. Discrete Mathematics, 132, 247–265.
Rossman, B. (2008). Homomorphism preservation theorems. Journal of the ACM, 55.
Tait, W. W. (1959). A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic, 24, 15–16.
Tarski, A. (1954). Contributions to the theory of models I. II. Indagationes Mathematicae, 16, 572–588.
Vardi, M. Y. (1982). The complexity of relational query languages. In Proceedings of the 14th ACM Symposium on Theory of Computing (pp. 137–146).
Weisfeiler, B., & Leman, A. (1976). On construction and identification of graphs. Lecture notes in mathematicsPrinceton: Citeseer.
Zhuk, D. (2017). A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS (pp. 331–342).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dawar, A. (2023). Constraint Satisfaction, Graph Isomorphism, and the Pebbling Comonad. In: Palmigiano, A., Sadrzadeh, M. (eds) Samson Abramsky on Logic and Structure in Computer Science and Beyond. Outstanding Contributions to Logic, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-24117-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-24117-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24116-1
Online ISBN: 978-3-031-24117-8
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)