Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Experimental Study of Time Series Forecasting Methods for Groundwater Level Prediction

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13812))

  • 588 Accesses

Abstract

Groundwater level prediction is an applied time series forecasting task with important social impacts to optimize water management as well as preventing some natural disasters: for instance, floods or severe droughts. Machine learning methods have been reported in the literature to achieve this task, but they are only focused on the forecast of the groundwater level at a single location. A global forecasting method aims at exploiting the groundwater level time series from a wide range of locations to produce predictions at a single place or at several places at a time. Given the recent success of global forecasting methods in prestigious competitions, it is meaningful to assess them on groundwater level prediction and see how they are compared to local methods. In this work, we created a dataset of 1026 groundwater level time series. Each time series is made of daily measurements of groundwater levels and two exogenous variables, rainfall and evapotranspiration. This dataset is made available to the communities for reproducibility and further evaluation. To identify the best configuration to effectively predict groundwater level for the complete set of time series, we compared different predictors including local and global time series forecasting methods. We assessed the impact of exogenous variables. Our result analysis shows that the best predictions are obtained by training a global method on past groundwater levels and rainfall data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    BRGM: Bureau des Recherches Géologiques et Minières (French geological survey).

  2. 2.

    FrenchPiezo dataset https://zenodo.org/record/7193812.

  3. 3.

    Source code and supplementary material: https://github.com/dmlc/xgboost.

  4. 4.

    Source code: https://github.com/frankl1/piezoforecast.

References

  1. Alexandrov, A., et al.: GluonTS: probabilistic and neural time series modeling in Python. J. Mach. Learn. Res. 21(116), 1–6 (2020)

    MATH  Google Scholar 

  2. Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines, chap. 4, pp. 67–80. APress (2015)

    Google Scholar 

  3. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 17(1), 152–161 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bojer, C.S., Meldgaard, J.P.: Kaggle forecasting competitions: an overlooked learning opportunity. Int. J. Forecast. 37, 587–603 (2021)

    Article  Google Scholar 

  5. Brédy, J., Gallichand, J., Celicourt, P., Gumiere, S.J.: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches. Agric. Water Manag. 233, 106090 (2020)

    Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 785–794 (2016)

    Google Scholar 

  8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(1), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Hersbach, H., et al.: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), vol. 10 (2018)

    Google Scholar 

  11. Hewamalage, H., Bergmeir, C., Bandara, K.: Global models for time series forecasting: A simulation study. Pattern Recogn. 124, 108441 (2022)

    Google Scholar 

  12. Osman, A.I.A., Ahmed, A.N., Chow, M.F., Huang, Y.F., El-Shafie, A.: Extreme gradient boosting (XGBoost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng. J. 12(2), 1545–1556 (2021)

    Article  Google Scholar 

  13. Januschowski, T., et al.: Criteria for classifying forecasting methods. Int. J. Forecast. 36, 167–177 (2020)

    Article  Google Scholar 

  14. Kisi, O., Shiri, J., Nikoofar, B.: Forecasting daily lake levels using artificial intelligence approaches. Comput. Geosci. 41, 169–180 (2012)

    Article  Google Scholar 

  15. Lara-Benítez, P., Carranza-García, M., Riquelme, J.C.: An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31, 2130001 (2021)

    Article  Google Scholar 

  16. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 36, 54–74 (2020)

    Article  Google Scholar 

  17. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: M5 accuracy competition: results, findings, and conclusions. Int. J. Forecast. (2022). In press

    Google Scholar 

  18. Montero-Manso, P., Hyndman, R.J.: Principles and algorithms for forecasting groups of time series: locality and globality. Int. J. Forecast. 37, 1632–1653 (2021)

    Article  Google Scholar 

  19. Nayak, P.C., Rao, Y.S., Sudheer, K.: Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour. Manage 20(1), 77–90 (2006)

    Article  Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Rahman, A.S., Hosono, T., Quilty, J.M., Das, J., Basak, A.: Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Adv. Water Resour. 141, 103595 (2020)

    Google Scholar 

  22. Rodriguez-Galiano, V., Mendes, M.P., Garcia-Soldado, M.J., Chica-Olmo, M., Ribeiro, L.: Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain). Sci. Total Environ. 476, 189–206 (2014)

    Article  Google Scholar 

  23. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191 (2017)

    Article  Google Scholar 

  24. Tao, H., et al.: Groundwater level prediction using machine learning models: a comprehensive review. Neurocomputing 489(C), 271–308 (2022)

    Article  Google Scholar 

  25. Taylor, S.J., Letham, B.: Forecasting at scale. PeerJ Preprints (2017)

    Google Scholar 

  26. Triebe, O., Hewamalage, H., Pilyugina, P., Laptev, N., Bergmeir, C., Rajagopal, R.: NeuralProphet: explainable forecasting at scale. arXiv:2111.15397v1 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Franklin Mbouopda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mbouopda, M.F., Guyet, T., Labroche, N., Henriot, A. (2023). Experimental Study of Time Series Forecasting Methods for Groundwater Level Prediction. In: Guyet, T., Ifrim, G., Malinowski, S., Bagnall, A., Shafer, P., Lemaire, V. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2022. Lecture Notes in Computer Science(), vol 13812. Springer, Cham. https://doi.org/10.1007/978-3-031-24378-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24378-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24377-6

  • Online ISBN: 978-3-031-24378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics