Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heterogeneous Network Representation Learning Based on Adaptive Multi-channel Graph Convolution

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13614))

Included in the following conference series:

  • 443 Accesses

Abstract

Network representation learning (NRL) is an important technique for network analysis. Heterogeneous information networks (HINs) contain multiple types of nodes and edges, which describe the personalized information of nodes and complex relationships between nodes. In this paper, we propose a Heterogeneous Adaptive Multi-Channel Graph Convolutional Networks (HAM-GCN) for HIN representation learning. In HAM-GCN, we design three channels to extract the specific and common embeddings with respect to each meta-path from node features, topological structures, and their combinations simultaneously. In addition, we design both channel-level attention and semantic-level attention to fuse the low-dimensional representations obtained from different channels and different meta-paths for learning the final representation. A large number of experiments on three benchmark data sets show that HAM-GCN extracts the most relevant information from topological structure and node features, which significantly improves the classification accuracy than other baseline algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui, P., Wang, X., Pei, J., et al.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. 31(5), 833–852 (2019)

    Article  Google Scholar 

  2. Zhang, D., Yin, J., Zhu, X., et al.: Network representation learning: a survey. IEEE Trans. Big Data 6(1), 3–28 (2020)

    Article  Google Scholar 

  3. Wu, J., He, J., Xu, J.: DEMO-Net: degree-specific graph neural networks for node and graph classification. In: KDD, pp 406–415 (2019)

    Google Scholar 

  4. Tu, W., Zhou, S., Liu, X., et al.: Deep fusion clustering network. In: AAAI, pp. 9978–9987 (2021)

    Google Scholar 

  5. Hou, S., Fan, Y., Ju, M., et al.: Disentangled representation learning in heterogeneous information network for large-scale android malware detection in the COVID-19 era and beyond. In: AAAI, pp 7754–7761 (2021)

    Google Scholar 

  6. Scarselli, F., Gori, M., Tsoi, A.C., et al.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR, pp. 1–14 (2017)

    Google Scholar 

  8. Zhuang, C, Ma, Q.: Dual graph convolutional networks for graph-based semi-supervised classification. In: WWW, pp. 499–508 (2018)

    Google Scholar 

  9. Dong, K., Huang, T., Zhou, L., Wang, L., Chen, H.: Deep attributed network embedding based on the PPMI. In: Jensen, C.S., et al. (eds.) DASFAA 2021. LNCS, vol. 12680, pp. 251–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73216-5_18

    Chapter  Google Scholar 

  10. Wang, X., Zhu, M., Bo, D., et al.: AM-GCN: adaptive multi-channel graph convolutional networks. In: KDD, pp 1243–1253 (2020)

    Google Scholar 

  11. Wang, L., Gao, C., Huang, C., et al.: Embedding heterogeneous networks into hyperbolic space without meta-path. In: AAAI, pp 10147–10155 (2021)

    Google Scholar 

  12. Bruna, J., Zaremba, W., Szlam, A., et al.: Spectral networks and locally connected networks on graphs. In: ICLR (2014)

    Google Scholar 

  13. Defferrard, M., Bresson X, Vandergheynst P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS, pp 3837–3845 (2016)

    Google Scholar 

  14. Monti, F., Boscaini, D., Masci, J., et al.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: CVPR, pp 5425–5434 (2017)

    Google Scholar 

  15. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD, pp 701–710 (2014)

    Google Scholar 

  16. Onrust, L., Bosch, A.V.D., Hamme, H.V.: Improving cross-domain n-gram language modelling with skipgrams. In: ACL, vol. 2 (2016)

    Google Scholar 

  17. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD, pp 855–864 (2016)

    Google Scholar 

  18. Tang, J., Qu, M., Wang, M., et al.: Large-scale information network embedding. In: WWW, pp 1067–1077 (2015)

    Google Scholar 

  19. Yang, C., Liu, Z., Zhao, D., et al.: Network representation learning with rich text information. In: IJCAI, pp 2111–2117 (2015)

    Google Scholar 

  20. Fu, T.-Y., Lee, W.-C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: CIKM, pp 1797–1806 (2017)

    Google Scholar 

  21. Wang, X., Ji, H., Shi, C., et al.: Heterogeneous graph attention network. In: WWW, pp 2022–2032 (2019)

    Google Scholar 

  22. Ren, Y., Liu, B., Huang, C., et al.: Heterogeneous deep graph infomax. CoRR, abs/1911.08538 (2019)

    Google Scholar 

  23. Hu, B., Fang, Y., Shi, C.: Adversarial learning on heterogeneous information networks. In: KDD, pp 120–129 (2019)

    Google Scholar 

  24. Greenfeld, D., Shalit, U.: Robust learning with the hilbert-schmidt independence criterion. In: ICML, pp 3759–3768 (2020)

    Google Scholar 

  25. Du, C., Tu, Z., Jiang. J.: Order-agnostic cross entropy for non-autoregressive machine translation. In: ICML, pp 2849–2859 (2021)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  27. Zhang, Z., Yang, H., Bu, J., et al.: ANRL: attributed network representation learning via deep neural networks. In: IJCAI, pp. 3155–3161 (2018)

    Google Scholar 

  28. Park, C., Han, J., Yu, H.: Deep multiplex graph infomax: attentive multiplex network embedding using global information. Knowl. Based Syst. 197, 105861 (2020)

    Article  Google Scholar 

  29. Cortes, C., Jackel, L.D., Solla, S.A., et al.: Learning curves: asymptotic values and rate of convergence. In: NIPS, pp. 327–334 (1993)

    Google Scholar 

  30. Laurens, V.D.M., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    MATH  Google Scholar 

  31. Wang, L., Fang, Y., Zhou, L.: Preference-based spatial co-location pattern mining. In: Big Data Management. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7566-9(2022)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (62062066, 61762090, 61966036), Yunnan Fundamental Research Projects (202201AS070015), University Key Laboratory of Internet of Things Technology and Application of Yunnan Province, and the Postgraduate Research and Innovation Foundation of Yunnan University (2021Y024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, J., Zhou, L., Du, G., Wang, L., Jiang, Y. (2022). Heterogeneous Network Representation Learning Based on Adaptive Multi-channel Graph Convolution. In: Wu, H., et al. Spatial Data and Intelligence. SpatialDI 2022. Lecture Notes in Computer Science, vol 13614. Springer, Cham. https://doi.org/10.1007/978-3-031-24521-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24521-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24520-6

  • Online ISBN: 978-3-031-24521-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics