Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Information Diffusion Prediction Based on Deep Attention in Heterogeneous Networks

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13614))

Included in the following conference series:

Abstract

Understanding how information is spread is critical necessities in many real-world application domains, so the study of information diffusion in social networks has attracted considerable research interest. Compared with the widely studied homogeneous networks, heterogeneous networks can more accurately model the process of information diffusion with multiple channels and more closely match the pattern of information diffusion in the real world. However, the complex structural information and rich semantic information in heterogeneous networks bring challenges to the extraction and utilization of effective information. In addition, the existing heterogeneous diffusion models do not fully consider the different effects of different diffusion channels on information propagation. Therefore, we propose a Heterogeneous Deep Attention Diffusion model (HDAD). HDAD first extracts the information matrix that integrates the network topology and information diffusion state based on the meta-path for simplifying the network and retains the effective information of the network; Secondly we design a deep learning architecture to learn low-dimensional embeddings and capture non-linear relationships; and then attention mechanism is used to learn the importance of different diffusion channels and to combine the low-dimensional embeddings under different semantics in the network rationally. Experiments on the public DBLP and ACM datasets are conducted, and the experimental results show that HDAD can fully exploit the information in the network and the prediction performance is better than the existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1, 5 (2007)

    Article  Google Scholar 

  2. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–46. Association for Computing Machinery (2003)

    Google Scholar 

  3. Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models linking sequential recommendation and information dissemination. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 447–57. Association for Computing Machinery, Anchorage (2019)

    Google Scholar 

  4. Zhao, L., et al.: Online flu epidemiological deep modeling on disease contact network. GeoInformatica 24(2), 443–475 (2019). https://doi.org/10.1007/s10707-019-00376-9

    Article  Google Scholar 

  5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–44. Association for Computing Machinery, Halifax (2017)

    Google Scholar 

  6. Fu, T.-Y., Lee, W.-C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1797–806. Association for Computing Machinery, Singapore (2017)

    Google Scholar 

  7. Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31, 357–370 (2019)

    Article  Google Scholar 

  8. He, Y., Song, Y., Li, J., Ji, C., Peng, J., Peng, H.: HeteSpaceyWalk: a heterogeneous spacey random walk for heterogeneous information network embedding. In: Proceedings of CIKM, pp. 639–48 (2019)

    Google Scholar 

  9. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022–32. Association for Computing Machinery, San Francisco (2019)

    Google Scholar 

  10. Hu, B., Fang, Y., Shi, C.: Adversarial learning on heterogeneous information networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 120–9. Association for Computing Machinery (2019)

    Google Scholar 

  11. Li, Y., Chen, C., Duan, M., Zeng, Z., Li, K.: Attention-aware encoder-decoder neural networks for heterogeneous graphs of things. IEEE Trans. Industr. Inf. 17, 2890–2898 (2021)

    Article  Google Scholar 

  12. Gui, H., Sun, Y., Han, J., Brova, G.: Modeling topic diffusion in multi-relational bibliographic information networks, pp. 649–58 (2014)

    Google Scholar 

  13. Molaei, S., Zare, H., Veisi, H.: Deep learning approach on information diffusion in heterogeneous networks. Knowl.-Based Syst. 189, 105153 (2020)

    Article  Google Scholar 

  14. Su, Y., Zhang, X., Wang, S., Fang, B., Zhang, T., Yu, P.S.: Understanding information diffusion via heterogeneous information network embeddings. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 501–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_30

    Chapter  Google Scholar 

  15. Wang, L.-M., Fang, Y., Zhou, L.-H.: Preference-Based Spatial Co-location Pattern Mining, pp. 1–284. Springer, Cham (2022). https://doi.org/10.1007/978-981-16-7566-9. ISBN 978-981-16-7565-2

    Book  MATH  Google Scholar 

  16. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. SIGKDD Explor. 14, 20–28 (2012)

    Article  Google Scholar 

  17. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4, 992–1003 (2011)

    Article  Google Scholar 

  18. Guo, M.-H., Liu, Z.-N., Mu, T.-J., Liang, D., Martin, R.R., Hu, S.-M.: Can attention enable MLPs to catch up with CNNs? Comput. Visual Media 7(3), 283–288 (2021). https://doi.org/10.1007/s41095-021-0240-x

    Article  Google Scholar 

  19. Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., et al.: MLP-Mixer: An all-MLP Architecture for Vision. CoRR, abs/2105.01601 (2012)

    Google Scholar 

  20. Citation Network Dataset. https://aminer.org/billboard/citation

  21. Zhu, M.: Recall, precision and average precision, department of statistics and actuarial science, p. 30. University of Waterloo, Waterloo (2004)

    Google Scholar 

  22. Diederik, P., Kingma, J.B.: Adam: a method for stochastic optimization. ICLR 2015, pp. 13 (2015)

    Google Scholar 

  23. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (62062066, 61762090, 61966036), Yunnan Fundamental Research Projects (202201AS070015), University Key Laboratory of Internet of Things Technology and Application of Yunnan Province, and the Postgraduate Research and Innovation Foundation of Yunnan University (2021Y024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, X., Zhou, L., Du, G., Wang, L., Jiang, Y. (2022). Information Diffusion Prediction Based on Deep Attention in Heterogeneous Networks. In: Wu, H., et al. Spatial Data and Intelligence. SpatialDI 2022. Lecture Notes in Computer Science, vol 13614. Springer, Cham. https://doi.org/10.1007/978-3-031-24521-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24521-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24520-6

  • Online ISBN: 978-3-031-24521-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics