Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ALPR - An Intelligent Approach Towards Detection and Recognition of License Plates in Uncontrolled Environments

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2023)

Abstract

Most existing Automatic License Plate Recognition (ALPR) approaches focus on images containing approximately frontal views. The considerable variation of LP across complicated environments and perspectives remains a massive challenge for a robust ALPR. This work proposes a comprehensive ALPR paradigm emphasizing unrestricted express screenplays in which the LP may be significantly influenced by diverse shooting angles, illumination circumstances, and complicated surroundings. This system integrates a Spatial Transformer Network, which can catch and repair numerous distorted LPs in an image so that all the plates are consistently aligned. Then, a convolutional neural network is sketched to determine LP characters containing various font styles and sizes. We evaluated the system with a data set containing annotations for a challenging LP image set from multiple areas and acquisition states. The experimental outcomes reveal that our proposed ALPR paradigm attains adequate recognition accuracy compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.openalpr.com.

  2. 2.

    https://www.sighthound.com/products/alpr/.

  3. 3.

    https://aws.amazon.com/rekognition/.

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Bulan, O., Kozitsky, V., Ramesh, P., Shreve, M.: Segmentation-and annotation-free license plate recognition with deep localization and failure identification. IEEE Trans. Intell. Transp. Syst. 18(9), 2351–2363 (2017)

    Article  Google Scholar 

  3. Dhillon, A., Verma, G.K.: Convolutional neural network: a review of models, methodologies and applications to object detection. Progr. Artif. Intell. 9(2), 85–112 (2020)

    Article  Google Scholar 

  4. Gonçalves, G.R., da Silva, S.P.G., Menotti, D., Schwartz, W.R.: Benchmark for license plate character segmentation. J. Electron. Imaging 25(5), 053034 (2016)

    Article  Google Scholar 

  5. Gonzalez, R.C.: Digital Image Processing. Pearson Education India (2009)

    Google Scholar 

  6. Hsu, G.S., Ambikapathi, A., Chung, S.L., Su, C.P.: Robust license plate detection in the wild. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  7. Hsu, G.S., Chen, J.C., Chung, Y.Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2012)

    Article  Google Scholar 

  8. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  9. Kaur, P., Kumar, Y., Gupta, S.: Artificial intelligence techniques for the recognition of multi-plate multi-vehicle tracking systems: a systematic review. Arch. Comput. Methods Eng. 29, 4897–4914 (2022)

    Google Scholar 

  10. Kurpiel, F.D., Minetto, R., Nassu, B.T.: Convolutional neural networks for license plate detection in images. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3395–3399. IEEE (2017)

    Google Scholar 

  11. Laroca, R., et al.: A robust real-time automatic license plate recognition based on the yolo detector. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2018)

    Google Scholar 

  12. Li, H., Wang, P., Shen, C.: Towards end-to-end car license plates detection and recognition with deep neural networks. CoRR abs/1709.08828 (2017)

    Google Scholar 

  13. Li, H., Shen, C.: Reading car license plates using deep convolutional neural networks and lstms. arXiv preprint arXiv:1601.05610 (2016)

  14. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  15. Montazzolli, S., Jung, C.: Real-time Brazilian license plate detection and recognition using deep convolutional neural networks. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 55–62. IEEE (2017)

    Google Scholar 

  16. Ravirathinam, P., Patawari, A.: Automatic license plate recognition for Indian roads using faster-RCNN. In: 2019 11th International Conference on Advanced Computing (ICoAC), pp. 275–281. IEEE (2019)

    Google Scholar 

  17. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  22. Sahu, C.K., Pattnayak, S.B., Behera, S., Mohanty, M.R.: A comparative analysis of deep learning approach for automatic number plate recognition. In: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pp. 932–937. IEEE (2020)

    Google Scholar 

  23. Saidani, T., Touati, Y.E.: A vehicle plate recognition system based on deep learning algorithms. Multimed. Tools Appl. 80(30), 36237–36248 (2021). https://doi.org/10.1007/s11042-021-11233-z

    Article  Google Scholar 

  24. Silva, S.M., Jung, C.R.: License plate detection and recognition in unconstrained scenarios. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 580–596 (2018)

    Google Scholar 

  25. Silva, S.M., Jung, C.R.: Real-time license plate detection and recognition using deep convolutional neural networks. J. Vis. Commun. Image Represent. 71, 102773 (2020)

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Xie, L., Ahmad, T., Jin, L., Liu, Y., Zhang, S.: A new CNN-based method for multi-directional car license plate detection. IEEE Trans. Intell. Transp. Syst. 19(2), 507–517 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep S. Udmale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakshi, A., Gulhane, S., Sawant, T., Sambhe, V., Udmale, S.S. (2023). ALPR - An Intelligent Approach Towards Detection and Recognition of License Plates in Uncontrolled Environments. In: Molla, A.R., Sharma, G., Kumar, P., Rawat, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2023. Lecture Notes in Computer Science, vol 13776. Springer, Cham. https://doi.org/10.1007/978-3-031-24848-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24848-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24847-4

  • Online ISBN: 978-3-031-24848-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics