Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Improved Lightweight Network Based on YOLOv5s for Object Detection in Autonomous Driving

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Object detection with high accuracy and fast inference speed based on camera sensors is important for autonomous driving. This paper develops a lightweight object detection network based on YOLOv5s which is one of the most promising object detection networks in the current literature. Our proposed network not only strengthens the object positioning ability in Cartesian coordinates without using space transformation, but also reinforces the reuse of feature maps from different scales of receptive fields. To show its robustness, different driving datasets are used to evaluate the effectiveness of our proposed network. The detection performances on objects with different sizes and in different weather conditions are also examined to show the generalizability of our proposed network. The results show that our proposed network has superior object detection performances in the conducted experiments with a very high running speed (i.e., 75.2 frames per second). This implies that our proposed network can serve as an effective and efficient solution to real-time object detection in autonomous driving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: Multinet: real-time joint semantic reasoning for autonomous driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1013–1020. IEEE (2018)

    Google Scholar 

  2. Dai, X.: Hybridnet: a fast vehicle detection system for autonomous driving. Signal Process. Image Commun. 70, 79–88 (2019)

    Article  Google Scholar 

  3. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: Squeezedet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 129–137 (2017)

    Google Scholar 

  4. Vishwakarma, A., Bhuyan, M.K.: Image fusion using adjustable non-subsampled shearlet transform. IEEE Trans. Instrum. Meas. 68(9), 3367–3378 (2018)

    Article  Google Scholar 

  5. Li, G., Ji, Z., Qu, X.: Stepwise domain adaptation (SDA) for object detection in autonomous vehicles using an adaptive centernet. IEEE Trans. Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2022.3164407

    Article  Google Scholar 

  6. Wang, H., Yu, Y., Cai, Y., Chen, X., Chen, L., Liu, Q.: A comparative study of state-of-the-art deep learning algorithms for vehicle detection. IEEE Intell. Transp. Syst. Mag. 11(2), 82–95 (2019)

    Article  Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  8. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  13. Hnewa, M., Radha, H.: Object detection under rainy conditions for autonomous vehicles: a review of state-of-the-art and emerging techniques. IEEE Signal Process. Mag. 38(1), 53–67 (2020)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  17. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  18. Jocher, G., et al.: ultralytics/YOLOv5: V5. 0-yolov5-p6 1280 models AWS supervise. LY and youtube integrations. Zenodo 11 (2021)

    Google Scholar 

  19. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  20. Li, G., Ji, Z., Qu, X., Zhou, R., Cao, D.: Cross-domain object detection for autonomous driving: a stepwise domain adaptative yolo approach. IEEE Trans. Intell. Veh. (2022). https://doi.org/10.1109/TIV.2022.3165353

    Article  Google Scholar 

  21. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  22. Yuan, P., et al.: HS-ResNet: hierarchical-split block on convolutional neural network. arXiv preprint arXiv:2010.07621 (2020)

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)

    Google Scholar 

  25. Yao, J., Qi, J., Zhang, J., Shao, H., Yang, J., Li, X.: A real-time detection algorithm for kiwifruit defects based on YOLOv5. Electronics 10(14), 1711 (2021)

    Article  Google Scholar 

  26. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  27. Huang, Z., Zhong, Z., Sun, L., Huo, Q.: Mask R-CNN with pyramid attention network for scene text detection. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 764–772. IEEE (2019)

    Google Scholar 

  28. Wang, H., Tong, X., Lu, F.: Deep learning based target detection algorithm for motion capture applications. In: Journal of Physics: Conference Series, vol. 1682, p. 012032. IOP Publishing (2020)

    Google Scholar 

  29. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561–5569 (2017)

    Google Scholar 

  30. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

    Google Scholar 

  31. Adarsh, P., Rathi, P., Kumar, M.: YOLO v3-tiny: object detection and recognition using one stage improved model. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 687–694. IEEE (2020)

    Google Scholar 

  32. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

    Google Scholar 

  33. Cai, Y., et al.: YOLOv4-5D: an effective and efficient object detector for autonomous driving. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    MathSciNet  Google Scholar 

  34. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  35. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  36. Li, G., Xie, H., Yan, W., Chang, Y., Qu, X.: Detection of road objects with small appearance in images for autonomous driving in various traffic situations using a deep learning based approach. IEEE Access 8, 211164–211172 (2020)

    Article  Google Scholar 

  37. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

Download references

Acknowledgment

This study is supported by the National Natural Science Foundation of China (52272421) and the Shenzhen Fundamental Research Fund (JCYJ201908081426- 13246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingda Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Zhang, Y., Ouyang, D., Qu, X. (2023). An Improved Lightweight Network Based on YOLOv5s for Object Detection in Autonomous Driving. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25056-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25055-2

  • Online ISBN: 978-3-031-25056-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics