Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PLMCL: Partial-Label Momentum Curriculum Learning for Multi-label Image Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13802))

Included in the following conference series:

Abstract

Multi-label image classification aims to predict all possible labels in an image. It is usually formulated as a partial-label learning problem, given the fact that it could be expensive in practice to annotate all labels in every training image. Existing works on partial-label learning focus on the case where each training image is annotated with only a subset of its labels. A special case is to annotate only one positive label in each training image. To further relieve the annotation burden and enhance the performance of the classifier, this paper proposes a new partial-label setting in which only a subset of the training images are labeled, each with only one positive label, while the rest of the training images remain unlabeled. To handle this new setting, we propose an end-to-end deep network, PLMCL (Partial-Label Momentum Curriculum Learning), that can learn to produce confident pseudo labels for both partially-labeled and unlabeled training images. The novel momentum-based law updates soft pseudo labels on each training image with the consideration of the updating velocity of pseudo labels, which help avoid trapping to low-confidence local minimum, especially at the early stage of training in lack of both observed labels and confidence on pseudo labels. In addition, we present a confidence-aware scheduler to adaptively perform easy-to-hard learning for different labels. Extensive experiments demonstrate that our proposed PLMCL outperforms many state-of-the-art multi-label classification methods under various partial-label settings on three different datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: 26th annual International Conference on Machine Learning (ICML), pp. 41–48 (2009)

    Google Scholar 

  3. Berthelot, D., et al.: ReMixMatch: semi-supervised learning with distribution alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785 (2019)

  4. Bucak, S.S., Jin, R., Jain, A.K.: Multi-label learning with incomplete class assignments. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2801–2808. IEEE (2011)

    Google Scholar 

  5. Cabral, R.S., Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for multi-label image classification. In: Advances in Neural Information Processing Systems, pp. 190–198 (2011)

    Google Scholar 

  6. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural Netw. 20(3), 542 (2009)

    Google Scholar 

  7. Chen, M., Zheng, A., Weinberger, K.: Fast image tagging. In: International Conference on Machine Learning (ICML), pp. 1274–1282. PMLR (2013)

    Google Scholar 

  8. Chu, H.-M., Yeh, C.-K., Wang, Y.-C.F.: Deep generative models for weakly-supervised multi-label classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 409–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_25

    Chapter  Google Scholar 

  9. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of Singapore. In: ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

    Google Scholar 

  10. Cole, E., Mac Aodha, O., Lorieul, T., Perona, P., Morris, D., Jojic, N.: Multi-label learning from single positive labels. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 933–942 (2021)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Deng, J., Russakovsky, O., Krause, J., Bernstein, M.S., Berg, A., Fei-Fei, L.: Scalable multi-label annotation. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 3099–3102 (2014)

    Google Scholar 

  13. Durand, T., Mehrasa, N., Mori, G.: Learning a deep convnet for multi-label classification with partial labels. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 647–657 (2019)

    Google Scholar 

  14. Everingham, M., Winn, J.: The pascal visual object classes challenge 2012 (voc2012) development kit. Pattern Anal. Statist. Model. Comput. Learn. Tech. Rep 8, 5 (2011)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

    Google Scholar 

  16. Guo, S., Guo, S., et al.: CurriculumNet: weakly supervised learning from large-scale web images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 139–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_9

    Chapter  Google Scholar 

  17. Huynh, D., Elhamifar, E.: Interactive multi-label CNN learning with partial labels. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9423–9432 (2020)

    Google Scholar 

  18. Jean, S., Firat, O., Johnson, M.: Adaptive scheduling for multi-task learning. arXiv preprint arXiv:1909.06434 (2019)

  19. Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.G.: Self-paced curriculum learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  20. Kapoor, A., Viswanathan, R., Jain, P.: Multilabel classification using Bayesian compressed sensing. Adv. Neural. Inf. Process. Syst. 25, 2645–2653 (2012)

    Google Scholar 

  21. Kumar, M., Packer, B., Koller, D.: Self-paced learning for latent variable models. Adv. Neural. Inf. Process. Syst. 23, 1189–1197 (2010)

    Google Scholar 

  22. Kundu, K., Tighe, J.: Exploiting weakly supervised visual patterns to learn from partial annotations. Adv. Neural. Inf. Process. Syst. 33, 561–572 (2020)

    Google Scholar 

  23. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, Y., Jin, R., Yang, L.: Semi-supervised multi-label learning by constrained non-negative matrix factorization. In: AAAI, vol. 6, pp. 421–426 (2006)

    Google Scholar 

  26. Mac Aodha, O., Cole, E., Perona, P.: Presence-only geographical priors for fine-grained image classification. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9596–9606 (2019)

    Google Scholar 

  27. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12

    Chapter  Google Scholar 

  28. Niu, X., Han, H., Shan, S., Chen, X.: Multi-label co-regularization for semi-supervised facial action unit recognition. arXiv preprint arXiv:1910.11012 (2019)

  29. Pineda, L., Salvador, A., Drozdzal, M., Romero, A.: Elucidating image-to-set prediction: an analysis of models, losses and datasets. CoRR (2019)

    Google Scholar 

  30. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  31. Sariyildiz, M.B., Cinbis, R.G.: Gradient matching generative networks for zero-shot learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2168–2178 (2019)

    Google Scholar 

  32. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  33. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: IEEE International Conference on Computer Vision (ICCV), pp. 843–852 (2017)

    Google Scholar 

  34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

    Google Scholar 

  35. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5552–5560 (2018)

    Google Scholar 

  36. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  37. Wang, B., Tu, Z., Tsotsos, J.K.: Dynamic label propagation for semi-supervised multi-class multi-label classification. In: IEEE International Conference on Computer Vision (ICCV), pp. 425–432 (2013)

    Google Scholar 

  38. Wang, L., Ding, Z., Fu, Y.: Adaptive graph guided embedding for multi-label annotation. In: IJCAI (2018)

    Google Scholar 

  39. Wang, Q., Shen, B., Wang, S., Li, L., Si, L.: Binary codes embedding for fast image tagging with incomplete labels. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 425–439. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_28

    Chapter  Google Scholar 

  40. Wang, X., Chen, Y., Zhu, W.: A survey on curriculum learning. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

    Google Scholar 

  41. Wu, B., Lyu, S., Ghanem, B.: ML-MG: multi-label learning with missing labels using a mixed graph. In: IEEE International Conference on Computer Vision (ICCV), pp. 4157–4165 (2015)

    Google Scholar 

  42. Xu, M., Jin, R., Zhou, Z.H.: Speedup matrix completion with side information: application to multi-label learning. In: Advances in Neural Information Processing Systems, pp. 2301–2309 (2013)

    Google Scholar 

  43. Yang, H., Zhou, J.T., Cai, J.: Improving multi-label learning with missing labels by structured semantic correlations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 835–851. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_50

    Chapter  Google Scholar 

  44. Yu, H.F., Jain, P., Kar, P., Dhillon, I.: Large-scale multi-label learning with missing labels. In: International Conference on Machine Learning (ICML), pp. 593–601. PMLR (2014)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial financial support of the National Science Foundation (1830512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabab Abdelfattah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdelfattah, R., Zhang, X., Wu, Z., Wu, X., Wang, X., Wang, S. (2023). PLMCL: Partial-Label Momentum Curriculum Learning for Multi-label Image Classification. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25063-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25062-0

  • Online ISBN: 978-3-031-25063-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics