Abstract
Introduction: Blood vessels can be non-invasively visualized from a digital fundus image (DFI). Several studies have shown an association between cardiovascular risk and vascular features obtained from DFI. Recent advances in computer vision and image segmentation enable automatising DFI blood vessel segmentation. There is a need for a resource that can automatically compute digital vasculature biomarkers (VBM) from these segmented DFI. Methods: In this paper, we introduce a Python Vasculature BioMarker toolbox, denoted PVBM. A total of 11 VBMs were implemented. In particular, we introduce new algorithmic methods to estimate tortuosity and branching angles. Using PVBM, and as a proof of usability, we analyze geometric vascular differences between glaucomatous patients and healthy controls. Results: We built a fully automated vasculature biomarker toolbox based on DFI segmentations and provided a proof of usability to characterize the vascular changes in glaucoma. For arterioles and venules, all biomarkers were significant and lower in glaucoma patients compared to healthy controls except for tortuosity, venular singularity length and venular branching angles. Conclusion: We have automated the computation of 11 VBMs from retinal blood vessel segmentation. The PVBM toolbox is made open source under a GNU GPL 3 license and is available on physiozoo.com (following publication).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramovich, O., Pizem, H., Van Eijgen, J., Stalmans, I., Blumenthal, E., Behar, J.: FundusQ-Net: a regression quality assessment deep learning algorithm for fundus images quality grading. arXiv preprint arXiv:2205.01676 (2022)
Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., Ortiz-De-Solorzano, C.: 3D reconstruction of histological sections: application to mammary gland tissue. Microsc. Res. Technol. 73(11), 1019–1029 (2010)
Badawi, S.A., Fraz, M.M.: Multiloss function based deep convolutional neural network for segmentation of retinal vasculature into arterioles and venules. In: BioMed Research International 2019 (2019)
Betzler, B.K., et al.: Retinal vascular profile in predicting incident cardiometabolic diseases among individuals with diabetes. Microcirculation, p. e12772 (2022)
Brinchmann-Hansen, O., Heier, H.: Theoretical relations between light streak characteristics and optical properties of retinal vessels. Acta Ophthalmol. 64(S179), 33–37 (1986)
Cheung, N., et al.: Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care 32(1), 106–110 (2009)
Chhabra, A., Jensen, R.V.: Direct determination of the f (\(\alpha \)) singularity spectrum. Phys. Rev. Lett. 62(12), 1327 (1989)
Dashtbozorg, B., Mendonca, A.M., Penas, S., Campilho, A.: RetinaCAD, a system for the assessment of retinal vascular changes. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6328–6331. IEEE (2014)
Doubal, F.N., MacGillivray, T.J., Patton, N., Dhillon, B., Dennis, M.S., Wardlaw, J.M.: Fractal analysis of retinal vessels suggests that a distinct vasculopathy causes lacunar stroke. Neurology 74(14), 1102–1107 (2010)
Doubal, F.N., et al.: Retinal arteriolar geometry is associated with cerebral white matter hyperintensities on magnetic resonance imaging. Int. J. Stroke 5(6), 434–439 (2010)
Family, F., Masters, B.R., Platt, D.E.: Fractal pattern formation in human retinal vessels. Physica D 38(1–3), 98–103 (1989)
Fhima, J., Van Eijgen, J., Freiman, M., Stalmans, I., Behar, J.A.: Lirot.ai: a novel platform for crowd-sourcing retinal image segmentations. In: Accepted for Proceeding in Computing in Cardiology 2022 (2022)
Goldenberg, D., Shahar, J., Loewenstein, A., Goldstein, M.: Diameters of retinal blood vessels in a healthy cohort as measured by spectral domain optical coherence tomography. Retina 33(9), 1888–1894 (2013)
Grisan, E., Foracchia, M., Ruggeri, A.: A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans. Med. Imaging 27(3), 310–319 (2008)
Gunn, R.M.: Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal disease, and (2) of increased arterial tension. Trans. Ophthalmol. Soc. UK 12, 124–125 (1892)
Gunn, R.M.: Ophthalmoscopic evidence of general arterial disease. Trans. Ophthalmol. Soc. UK 18, 356–381 (1898)
Guo, S., Yin, S., Tse, G., Li, G., Su, L., Liu, T.: Association between caliber of retinal vessels and cardiovascular disease: a systematic review and meta-analysis. Curr. Atheroscler. Rep. 22(4), 1–13 (2020)
Hanssen, H., et al.: Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 216(2), 433–439 (2011)
Hart, W.E., Goldbaum, M., Côté, B., Kube, P., Nelson, M.R.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53(2), 239–252 (1999)
Karperien, A.: Fraclac for imagej (2013)
Kaushik, S., Tan, A.G., Mitchell, P., Wang, J.J.: Prevalence and associations of enhanced retinal arteriolar light reflex: a new look at an old sign. Ophthalmology 114(1), 113–120 (2007)
Kawasaki, R., Wang, J.J., Rochtchina, E., Lee, A.J., Wong, T.Y., Mitchell, P.: Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains eye study. Ophthalmology 120(1), 84–90 (2013)
Keith, N.M.: Some different types of essential hypertension: their course and prognosis. Am. J. Med. Sci. 197, 332–343 (1939)
Lemmens, S., et al.: Age-related changes in the fractal dimension of the retinal microvasculature, effects of cardiovascular risk factors and smoking behaviour. Acta Ophthalmologica (2021)
Liew, G., et al.: Fractal analysis of retinal microvasculature and coronary heart disease mortality. Eur. Heart J. 32(4), 422–429 (2011)
Liew, G., Wang, J.J.: Retinal vascular signs: a window to the heart? Revista Española de Cardiología (English Edition) 64(6), 515–521 (2011)
Liew, G., et al.: The retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115(11), 1951–1956 (2008)
Lotmar, W., Freiburghaus, A., Bracher, D.: Measurement of vessel tortuosity on fundus photographs. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 211(1), 49–57 (1979)
Macek, W.M., Wawrzaszek, A.: Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere. J. Geophys. Res. Space Phys. 114(A3) (2009)
Mainster, M.A.: The fractal properties of retinal vessels: embryological and clinical implications. Eye 4(1), 235–241 (1990)
Mandelbrot, B.B., Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 1. WH Freeman, New York (1982)
Martínez-Pérez, M.E., et al.: Geometrical and morphological analysis of vascular branches from fundus retinal images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 756–765. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-40899-4_78
Mehta, R., et al.: Phosphate, fibroblast growth factor 23 and retinopathy in chronic kidney disease: the chronic renal insufficiency cohort study. Nephrol. Dial. Transplant. 30(9), 1534–1541 (2015)
Miri, M., Amini, Z., Rabbani, H., Kafieh, R.: A comprehensive study of retinal vessel classification methods in fundus images. J. Med. Sig. Sens. 7(2), 59 (2017)
Murphy, S.L., Kochanek, K.D., Xu, J., Arias, E.: Mortality in the United States, 2020 (2021)
Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. ophthalmol. Vis. Sci. 50(5), 2004–2010 (2009)
Parr, J.C., Spears, G.F.S.: General caliber of the retinal arteries expressed as the equivalent width of the central retinal artery. Am. J. Ophthalmol. 77(4), 472–477 (1974)
Perez-Rovira, A., et al.: VAMPIRE: vessel assessment and measurement platform for images of the REtina. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3391–3394. IEEE (2011)
Posadas, A.N.D., Giménez, D., Bittelli, M., Vaz, C.M.P., Flury, M.: Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65(5), 1361–1367 (2001)
Provost, E.B., Nawrot, T.S., Int Panis, L., Standaert, A., Saenen, N.D., De Boever, P.: Denser retinal microvascular network is inversely associated with behavioral outcomes and sustained attention in children. Front. Neurol. 12, 547033 (2021)
Rasband, W.S.: ImageJ, US National Institutes of Health, Bethesda, Maryland, USA (2011)
Sabanayagam, C., et al.: Retinal microvascular caliber and chronic kidney disease in an Asian population. Am. J. Epidemiol. 169(5), 625–632 (2009)
Scheie, H.G.: Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis. A.M.A. Arch. Ophthalmol. 49(2), 117–138 (1953)
Sharrett, A.R., et al.: Retinal arteriolar diameters and elevated blood pressure: the atherosclerosis risk in communities study. Am. J. Epidemiol. 150(3), 263–270 (1999)
Sng, C.C.A., et al.: Fractal analysis of the retinal vasculature and chronic kidney disease. Nephrol. Dial. Transplant. 25(7), 2252–2258 (2010)
Stosic, T., Stosic, B.D.: Multifractal analysis of human retinal vessels. IEEE Trans. Med. Imaging 25(8), 1101–1107 (2006)
Ţălu, Ş: Characterization of retinal vessel networks in human retinal imagery using quantitative descriptors. Hum. Veterinary Med. 5(2), 52–57 (2013)
Ţălu, Ş, Stach, S., Călugăru, D.M., Lupaşcu, C.A., Nicoară, S.D.: Analysis of normal human retinal vascular network architecture using multifractal geometry. Int. J. Ophthalmol. 10(3), 434 (2017)
Van Craenendonck, T., et al.: Retinal microvascular complexity comparing mono-and multifractal dimensions in relation to cardiometabolic risk factors in a Middle Eastern population. Acta Ophthalmol. 99(3), e368–e377 (2021)
Witt, N., et al.: Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47(5), 975–981 (2006)
Acknowledgment
The research was supported by Grant No ERANET - 2031470 from the Ministry of Health, by the Israel PBC-VATAT and by the Technion Center for Machine Learning and Intelligent Systems (MLIS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fhima, J., Eijgen, J.V., Stalmans, I., Men, Y., Freiman, M., Behar, J.A. (2023). PVBM: A Python Vasculature Biomarker Toolbox Based on Retinal Blood Vessel Segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-25066-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25065-1
Online ISBN: 978-3-031-25066-8
eBook Packages: Computer ScienceComputer Science (R0)